Limit Laws of Maximal Birkhoff Sums for Circle Rotations via Quantum Modular Forms

被引:0
|
作者
Borda, Bence [1 ]
机构
[1] Graz Univ Technol, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
THEOREMS;
D O I
10.1093/imrn/rnad107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inthispaper, weshowhowquantummodularformsnaturallyariseintheergodictheoryofcirclerotations. WorkingwiththeclassicalBirkhoffsumS(N)(alpha) = Sigma(N)(n)= 1({n alpha}- 1/2), weprovethatthemaximumandtheminimumaswellascertainexponentialmomentsof S-N( r) asfunctionsof r.is an element of Q satisfyadirectanalogueofZagier'scontinuityconjecture, originallystatedforaquantuminvariantofthefigure-eightknot. Asacorollary, wefindthelimitdistributionof max 0 <= N<M-N(S)(alpha) and min0 <= N<M-N(S)(alpha) witharandoma alpha is an element of[0,1].
引用
收藏
页码:19340 / 19389
页数:50
相关论文
共 9 条
  • [1] Behaviour of Birkhoff sums generated by rotations of the circle
    Antonevich, Anatolij B.
    Kochergin, Andrey V.
    Shukur, Ali A.
    [J]. SBORNIK MATHEMATICS, 2022, 213 (07) : 891 - 924
  • [2] A Limit Theorem for Birkhoff Sums of non-Integrable Functions over Rotations
    Sinai, Yakov G.
    Ulcigrai, Corinna
    [J]. GEOMETRIC AND PROBABILISTIC STRUCTURES IN DYNAMICS, 2008, 469 : 317 - +
  • [3] Limit laws for rational continued fractions and value distribution of quantum modular forms
    Bettin, Sandro
    Drappeau, Sary
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (06) : 1377 - 1425
  • [4] Cotangent sums, quantum modular forms, and the generalized Riemann hypothesis
    Lewis, John
    Zagier, Don
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [5] Cotangent sums, quantum modular forms, and the generalized Riemann hypothesis
    John Lewis
    Don Zagier
    [J]. Research in the Mathematical Sciences, 2019, 6
  • [6] A note on additive twists, reciprocity laws and quantum modular forms
    Nordentoft, Asbjorn Christian
    [J]. RAMANUJAN JOURNAL, 2021, 56 (01): : 151 - 162
  • [7] A note on additive twists, reciprocity laws and quantum modular forms
    Asbjørn Christian Nordentoft
    [J]. The Ramanujan Journal, 2021, 56 : 151 - 162
  • [8] Quantum modular forms from real-quadratic double sums
    Bringmann, Kathrin
    Nazaroglu, Caner
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (03): : 1085 - 1118
  • [9] Twisted Eisenstein series, cotangent-zeta sums, and quantum modular forms
    Folsom, Amanda
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 7 (01): : 33 - 48