ASSET: Auto-Segmentation of the Seventeen SEgments for Ventricular Tachycardia Ablation in Radiation Therapy

被引:0
|
作者
Morris, Eric [1 ]
Chin, Robert [2 ]
Wu, Trudy [2 ]
Smith, Clayton [2 ]
Nejad-Davarani, Siamak [3 ]
Cao, Minsong [2 ]
机构
[1] Washington Univ, Dept Radiat Oncol, St Louis, MO 63110 USA
[2] UCLA Hlth Syst, Dept Radiat Oncol, Los Angeles, CA 90095 USA
[3] Univ Miami, Miller Sch Med, Dept Radiat Oncol, Miami, FL 33136 USA
关键词
radiation therapy; cardiac ablation; ventricular tachycardia; automatic segmentation; CARDIAC MAGNETIC-RESONANCE; AUTOMATIC SEGMENTATION; HEART; ATLAS;
D O I
10.3390/cancers15164062
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
There has been a recent effort to treat high-risk ventricular tachycardia (VT) patients through radio-ablation. However, manual segmentation of the VT target is complex and time-consuming. This work introduces ASSET, or Auto-segmentation of the Seventeen SEgments for Tachycardia ablation, to aid in radiation therapy (RT) planning. ASSET was retrospectively applied to CTs for 26 thoracic RT patients (13 undergoing VT ablation). The physician-defined parasternal long-axis of the left ventricle (LV) and the axes generated from principal component analysis (PCA) were compared using mean distance to agreement (MDA) and angle of separation. The manually selected right ventricle insertion point and LVs were used to apply the ASSET model to automatically generate the 17 segments of the LV myocardium (LVM). Physician-defined parasternal long-axis differed from PCA by 1.2 +/- 0.3 mm MDA and 6.9 +/- 0.7 degrees. Segments differed by 0.69 +/- 0.29 mm MDA and 0.89 +/- 0.03 Dice similarity coefficient. Running ASSET takes < 5 min where manual segmentation took > 2 h/patient. Agreement between ASSET and expert contours was comparable to inter-observer variability. Qualitative scoring conducted by three experts revealed automatically generated segmentations were clinically useable as-is. ASSET offers efficient and reliable automatic segmentations for the 17 segments of the LVM for target generation in RT planning.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ASSET: Auto-Segmentation of the Seventeen SEgments for Ventricular Tachycardia Ablation in Radiation Therapy
    Morris, E.
    Chin, R.
    Wu, T.
    Smith, C.
    Nejad-Davarani, S.
    Cao, M.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E358 - E358
  • [2] Twin AI Algorithms for Quality Control of Auto-Segmentation in Radiation Therapy
    Guthier, C.
    Zeleznik, R.
    Bitterman, D.
    Punglia, R.
    Bredfeldt, J.
    Aerts, H.
    Mak, R.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E263 - E263
  • [3] Auto-segmentation for Radiation Treatment Planning of Breast Cancer
    Godley, A. R.
    Tai, A.
    White, J.
    Li, X.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03): : S634 - S634
  • [4] Atlas-based auto-segmentation for delineating the heart and cardiac substructures radiation therapy
    Milo, M. L.
    Nyeng, T. B.
    Lorenzen, E. L.
    Hoffmann, L.
    Moller, D. S.
    Offersen, B. V.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1436 - S1437
  • [5] Patient-Specific Auto-segmentation on Daily kVCT Images for Adaptive Radiation Therapy
    Chen, Yizheng
    Gensheimer, Michael F.
    Bagshaw, Hilary P.
    Butler, Santino
    Yu, Lequan
    Zhou, Yuyin
    Shen, Liyue
    Kovalchuk, Nataliya
    Surucu, Murat
    Chang, Daniel T.
    Xing, Lei
    Han, Bin
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : 505 - 514
  • [6] External Validation of a Deep Learning-Based Auto-Segmentation Method for Radiation Therapy
    Kuo, M.
    Zhang, T.
    Zhong, H.
    Huang, M.
    Geng, H.
    Cheng, C.
    Li, Y. X.
    Dai, J.
    Xiao, Y.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E545 - E545
  • [7] Auto-Segmentation for Thoracic Radiation Treatment Planning: A Grand Challenge
    Yang, Jinzhong
    Armato, S.
    Sharp, G.
    Yang, J.
    Veeraraghavan, H.
    Yang, J.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3297 - 3298
  • [8] Evaluation of a Deep Learning-Based Auto-Segmentation Tool for Online Adaptive Radiation Therapy
    Amjad, A.
    Thill, D.
    Lawton, C. A. F.
    O'Connell, N.
    Hall, W. A.
    Li, A.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E785 - E786
  • [9] Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy
    Yang, Jinzhong
    Beadle, Beth M.
    Garden, Adam S.
    Gunn, Brandon
    Rosenthal, David
    Ang, Kian
    Frank, Steven
    Williamson, Ryan
    Balter, Peter
    Court, Laurence
    Dong, Lei
    [J]. PRACTICAL RADIATION ONCOLOGY, 2014, 4 (01) : E31 - E37
  • [10] Clinical evaluation of a deep learning CBCT auto-segmentation software for prostate adaptive radiation therapy
    Radici, Lorenzo
    Piva, Cristina
    Borca, Valeria Casanova
    Cante, Domenico
    Ferrario, Silvia
    Paolini, Marina
    Cabras, Laura
    Petrucci, Edoardo
    Franco, Pierfrancesco
    La Porta, Maria Rosa
    Pasquino, Massimo
    [J]. CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 47