Thangka Hyperspectral Image Super-Resolution Based on a Spatial-Spectral Integration Network

被引:3
|
作者
Wang, Sai [1 ]
Fan, Fenglei [1 ]
机构
[1] South China Normal Univ, Sch Geog, Guangzhou 510631, Peoples R China
关键词
Thangka; spectral super-resolution; Transformer; RGB imaging; hyperspectral imaging; PAINTINGS;
D O I
10.3390/rs15143603
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thangka refers to a form of Tibetan Buddhist painting on a fabric, scroll, or Thangka, often depicting deities, scenes, or mandalas. Deep-learning-based super-resolution techniques have been applied to improve the spatial resolution of hyperspectral images (HSIs), especially for the preservation and analysis of Thangka cultural heritage. However, existing CNN-based methods encounter difficulties in effectively preserving spatial information, due to challenges such as registration errors and spectral variability. To overcome these limitations, we present a novel cross-sensor super-resolution (SR) framework that utilizes high-resolution RGBs (HR-RGBs) to enhance the spectral features in low-resolution hyperspectral images (LR-HSIs). Our approach utilizes spatial-spectral integration (SSI) blocks and spatial-spectral restoration (SSR) blocks to effectively integrate and reconstruct spatial and spectral features. Furthermore, we introduce a frequency multi-head self-attention (F-MSA) mechanism that treats high-, medium-, and low-frequency features as tokens, enabling self-attention computations across the frequency dimension. We evaluate our method on a custom dataset of ancient Thangka paintings and demonstrate its effectiveness in enhancing the spectral resolution in high-resolution hyperspectral images (HR-HSIs), while preserving the spatial characteristics of Thangka artwork with minimal information loss.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Hyperspectral Image Super-Resolution Based on Spatial-Spectral Feature Extraction Network
    Li Yanshan
    Chen Shifu
    Luo Wenhan
    Zhou Li
    Xie Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (03) : 415 - 428
  • [2] Hyperspectral Image Super-Resolution Based on Spatial-Spectral Feature Extraction Network
    LI Yanshan
    CHEN Shifu
    LUO Wenhan
    ZHOU Li
    XIE Weixin
    Chinese Journal of Electronics, 2023, 32 (03) : 415 - 428
  • [3] Spatial-Spectral Deep Residual Network for Hyperspectral Image Super-Resolution
    Zheng W.F.
    Xie Z.X.
    SN Computer Science, 4 (4)
  • [4] Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation
    Hu, Jing
    Zhao, Minghua
    Li, Yunsong
    REMOTE SENSING, 2019, 11 (10)
  • [5] An efficient unfolding network with disentangled spatial-spectral representation for hyperspectral image super-resolution
    Liu, Denghong
    Li, Jie
    Yuan, Qiangqiang
    Zheng, Li
    He, Jiang
    Zhao, Shuheng
    Xiao, Yi
    INFORMATION FUSION, 2023, 94 : 92 - 111
  • [6] Spatial-spectral dual path hyperspectral image super-resolution reconstruction network based on spectral response functions
    Xu, Yinghao
    Jiang, Xi
    Hou, Junyi
    Sun, Yuanyuan
    Zhu, Xijun
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [7] SSAformer: Spatial-Spectral Aggregation Transformer for Hyperspectral Image Super-Resolution
    Wang, Haoqian
    Zhang, Qi
    Peng, Tao
    Xu, Zhongjie
    Cheng, Xiangai
    Xing, Zhongyang
    Li, Teng
    REMOTE SENSING, 2024, 16 (10)
  • [8] Hyperspectral Image Super-Resolution Based on Tensor Spatial-Spectral Joint Correlation Regularization
    Xing, Yinghui
    Yang, Shuyuan
    Jiao, Licheng
    IEEE ACCESS, 2020, 8 : 63654 - 63665
  • [9] Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial-Spectral Group Sparsity
    Li, Jie
    Yuan, Qiangqiang
    Shen, Huanfeng
    Meng, Xiangchao
    Zhang, Liangpei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1250 - 1254
  • [10] Hyperspectral image super-resolution with spectral-spatial network
    Jia, Jinrang
    Ji, Luyan
    Zhao, Yongchao
    Geng, Xiurui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7806 - 7829