Predicting protein-lipid interactions through machine learning methods employing new tokenization techniques

被引:0
|
作者
Rodriguez, Carlos R. Cuellar [1 ]
Tajkhorshid, Emad [2 ]
机构
[1] Univ Illinois, Biophys, Urbana, IL USA
[2] Univ Illinois, Biochem, Urbana, IL USA
关键词
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
2475-Pos
引用
收藏
页码:509A / 509A
页数:1
相关论文
共 50 条
  • [1] Predicting affinities of protein-lipid interactions using molecular simulations
    Ansell, T. Bertie
    Song, Wanling
    Horrell, Michael R.
    Pipatpolkai, Tanadet
    Sansom, Mark S.
    Stansfeld, Phillip J.
    Corey, Robin A.
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 77 - 77
  • [3] New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions
    Mateo, CR
    Souto, AA
    AmatGuerri, F
    Acuna, AU
    [J]. BIOPHYSICAL JOURNAL, 1996, 71 (04) : 2177 - 2191
  • [4] Recent advances on the machine learning methods in predicting ncRNA-protein interactions
    Zhong, Lin
    Zhen, Meiqin
    Sun, Jianqiang
    Zhao, Qi
    [J]. MOLECULAR GENETICS AND GENOMICS, 2021, 296 (02) : 243 - 258
  • [5] Recent advances on the machine learning methods in predicting ncRNA-protein interactions
    Lin Zhong
    Meiqin Zhen
    Jianqiang Sun
    Qi Zhao
    [J]. Molecular Genetics and Genomics, 2021, 296 : 243 - 258
  • [6] Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions
    Balla, T
    [J]. JOURNAL OF CELL SCIENCE, 2005, 118 (10) : 2093 - 2104
  • [7] Predicting protein-protein interactions in E-coli using machine learning methods
    Goyal, Kshama
    Vidyasagar, M.
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2190 - 2195
  • [8] In situ, Reversible Gating of a Mechanosensitive Ion Channel through Protein-Lipid Interactions
    Dimitrova, Anna
    Walko, Martin
    Shabestari, Maryam Hashemi
    Kumar, Pravin
    Huber, Martina
    Kocer, Armagan
    [J]. FRONTIERS IN PHYSIOLOGY, 2016, 7
  • [9] Recent Advances in Predicting Protein-lncRNA Interactions Using Machine Learning Methods
    Yu, Han
    Shen, Zi-Ang
    Zhou, Yuan-Ke
    Du, Pu-Feng
    [J]. CURRENT GENE THERAPY, 2022, 22 (03) : 228 - 244
  • [10] Machine learning solutions for predicting protein-protein interactions
    Casadio, Rita
    Martelli, Pier Luigi
    Savojardo, Castrense
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (06)