Deep learning-based computed tomographic image super-resolution via wavelet embedding

被引:4
|
作者
Kim, Hyeongsub [1 ,2 ]
Lee, Haenghwa [3 ]
Lee, Donghoon [4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Med Device Innovat Ctr, Sch Interdisciplinary Biosci & Bioengn, Pohang 37674, South Korea
[2] Deepnoid Inc, Seoul 08376, South Korea
[3] Inje Univ, Ilsan Paik Hosp, Coll Med, Dept Neurosugery, Goyang Si 10380, Gyeonggi Do, South Korea
[4] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
关键词
Computed tomography; Deep learning; Super resolution; CONVOLUTIONAL NEURAL-NETWORK; CT;
D O I
10.1016/j.radphyschem.2022.110718
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effort to realize high-resolution medical images have been made steadily. In particular, super resolution tech-nology based on deep learning is making excellent achievement in computer vision recently. In this study, we developed a model that can dramatically increase the spatial resolution of medical images using deep learning technology, and we try to demonstrate the superiority of proposed model by analyzing it quantitatively. We simulated the computed tomography images with various detector pixel size and tried to restore the low-resolution image to high resolution image. We set the pixel size to 0.5, 0.8 and 1 mm2 for low resolution image and the high-resolution image, which were used for ground truth, was simulated with 0.25 mm2 pixel size. The deep learning model that we used was a fully convolution neural network based on residual structure. The result image demonstrated that proposed super resolution convolution neural network improve image resolution significantly. We also confirmed that PSNR and MTF was improved up to 38% and 65% respectively. The quality of the prediction image is not significantly different depending on the quality of the input image. In addition, the proposed technique not only increases image resolution but also has some effect on noise reduction. In conclusion, we developed deep learning architectures for improving image resolution of computed tomography images. We quantitatively confirmed that the proposed technique effectively improves image resolution without distorting the anatomical structures.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Learning-Based Super-Resolution Applied to Dental Computed Tomography
    Hatvani, Janka
    Horvath, Andras
    Michetti, Jerome
    Basarab, Adrian
    Kouame, Denis
    Gyongy, Miklos
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 120 - 128
  • [2] Deep learning-based magnetic resonance image super-resolution: a survey
    Ji Z.
    Zou B.
    Kui X.
    Liu J.
    Zhao W.
    Zhu C.
    Dai P.
    Dai Y.
    Neural Computing and Applications, 2024, 36 (21) : 12725 - 12752
  • [3] A comprehensive review of deep learning-based single image super-resolution
    Bashir, Syed Muhammad Arsalan
    Wang, Yi
    Khan, Mahrukh
    Niu, Yilong
    PEERJ COMPUTER SCIENCE, 2021,
  • [4] Learning-Based Nonparametric Image Super-Resolution
    Shyamsundar Rajaram
    Mithun Das Gupta
    Nemanja Petrovic
    Thomas S. Huang
    EURASIP Journal on Advances in Signal Processing, 2006
  • [5] Learning-based nonparametric image super-resolution
    Rajaram, Shyamsundar
    Das Gupta, Mithun
    Petrovic, Nemanja
    Huang, Thomas S.
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1) : 1 - 11
  • [6] Local Learning-Based Image Super-Resolution
    Lu, Xiaoqiang
    Yuan, Haoliang
    Yuan, Yuan
    Yan, Pingkun
    Li, Luoqing
    Li, Xuelong
    2011 IEEE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2011,
  • [7] Single Image Super-resolution Reconstruction with Wavelet based Deep Residual Learning
    Dou, Jianfang
    Tu, Zimei
    Peng, Xishuai
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4270 - 4275
  • [8] Impact of deep learning-based image super-resolution on binary signal detection
    Zhang, Xiaohui
    Kelkar, Varun A.
    Granstedt, Jason
    Li, Hua
    Anastasio, Mark A.
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (06)
  • [9] Performance Analysis of JPEG XR with Deep Learning-Based Image Super-Resolution
    Min, Taingliv
    Aramvith, Supavadee
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1192 - 1197
  • [10] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,