3D modeling of positive streamers in air with inhomogeneous density

被引:0
|
作者
Guo, Baohong [1 ]
Ebert, Ute [1 ,2 ]
Teunissen, Jannis [1 ]
机构
[1] Ctr Wiskunde & Informat CWI, Amsterdam, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, Eindhoven, Netherlands
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2023年 / 32卷 / 09期
关键词
3D modeling; streamer discharge; branching; inhomogeneous gas; gas density; DISCHARGE; IONIZATION; WAVES; PROPAGATION; SIMULATION; PRESSURE; NITROGEN; FIELDS; SHOCK;
D O I
10.1088/1361-6595/acf87d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effect of an inhomogeneous gas density on positive streamer discharges in air using a 3D fluid model with stochastic photoionization, generalizing earlier work with a 2D axisymmetric model by Starikovskiy and Aleksandrov (2019 Plasma Sources Sci. Technol. 28 095022). We consider various types of planar and (hemi)spherical gas density gradients. Streamers propagate from a region of density n0 towards a region of higher or lower gas density n1 , where n0 corresponds to 300K and 1bar . We observe that streamers can always propagate into a region with a lower gas density. When streamers enter a region with a higher gas density, branching can occur at the density gradient, with branches growing in a flower-like pattern over the gradient surface. Depending on the gas density ratio, the gradient width and other factors, narrow branches are able to propagate into the higher-density gas. In a planar geometry, we find that such propagation is possible up to a gas density slope of 3.5n0/mm , although this value depends on a number of conditions, such as the gradient angle. Surprisingly, a higher applied voltage makes it more difficult for streamers to penetrate into the high-density region, due to an increase of the primary streamer's radius.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 3D particle simulations of positive air-methane streamers for combustion
    Bouwman, Dennis
    Teunissen, Jannis
    Ebert, Ute
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (04):
  • [2] 3D simulations of positive streamers in air in a strong external magnetic field
    Wang, Zhen
    Sun, Anbang
    Dujko, Sasa
    Ebert, Ute
    Teunissen, Jannis
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2024, 33 (02):
  • [3] 3D PIC-MCC simulations of positive streamers in air gaps
    Jiang, M.
    Li, Y.
    Wang, H.
    Liu, C.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (10)
  • [4] Positive streamers in air of varying density: experiments on the scaling of the excitation density
    Dubrovin, D.
    Nijdam, S.
    Clevis, T. T. J.
    Heijmans, L. C. J.
    Ebert, U.
    Yair, Y.
    Price, C.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (05)
  • [5] 3D fluid modeling of positive streamer discharges in air with stochastic photoionization
    Marskar, Robert
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (05):
  • [6] A 3D numerical study of positive streamers interacting with localized plasma regions
    Yuan, Xu-Chu
    Li, Han-Wei
    Abbas, M. F.
    Li, Xiao-Ran
    Wang, Zhen
    Zhang, Guan-Jun
    Sun, An-Bang
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (42)
  • [7] Positive streamers in air and nitrogen of varying density: experiments on similarity laws
    Briels, T. M. P.
    van Veldhuizen, E. M.
    Ebert, U.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (23)
  • [8] 3D properties of pulsed corona streamers
    van Veldhuizen, E. M.
    Nijdam, S.
    Luque, A.
    Brau, F.
    Ebert, U.
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (02):
  • [9] Reconnection and merging of positive streamers in air
    Nijdam, S.
    Geurts, C. G. C.
    van Veldhuizen, E. M.
    Ebert, U.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (04)
  • [10] The propagation of positive streamers in air and at air/insulator surfaces
    Allen, NL
    [J]. PHENOMENA IN IONIZED GASES, 1996, (363): : 247 - 256