Residual attention based uncertainty-guided mean teacher model for semi-supervised breast masses segmentation in 2D ultrasonography

被引:10
|
作者
Farooq, Muhammad Umar [1 ]
Ullah, Zahid [2 ]
Gwak, Jeonghwan [1 ,2 ,3 ,4 ]
机构
[1] Korea Natl Univ Transportat, Dept IT Energy Convergence BK21 FOUR, Chungju 27469, South Korea
[2] Korea Natl Univ Transportat, Dept Software, Chungju 27469, South Korea
[3] Korea Natl Univ Transportat, Dept Biomed Engn, Chungju 27469, South Korea
[4] Korea Natl Univ Transportat, Dept AI Robot Engn, Chungju 27469, South Korea
基金
新加坡国家研究基金会;
关键词
Breast tumor segmentation; Mean teacher-student; Self-ensembling; semi-supervised learning; uncertainty estimation; ULTRASOUND; CANCER;
D O I
10.1016/j.compmedimag.2022.102173
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast tumor is the second deadliest disease among women around the world. Earlier tumor diagnosis is extremely important for improving the survival rate. Recent deep-learning techniques proved helpful in the timely diagnosis of various tumors. However, in the case of breast tumors, the characteristics of the tumors, i.e., low visual contrast, unclear boundary, and diversity in shape and size of breast lesions, make it more challenging to design a highly efficient detection system. Additionally, the scarcity of publicly available labeled data is also a major hurdle in the development of highly accurate and robust deep-learning models for breast tumor detection. To overcome these issues, we propose residual-attention-based uncertainty-guided mean teacher framework which incorporates the residual and attention blocks. The residual for optimizing the deep network by enabling the flow of high-level features and attention modules improves the focus of the model by optimizing its weights during the learning process. We further explore the potential of utilizing unlabeled data during the training process by employing the semi-supervised learning (SSL) method. Particularly, the uncertainty-guided mean-teacher student architecture is exploited to demonstrate the potential of incorporating the unlabeled samples during the training of residual attention U-Net model. The proposed SSL framework has been rigorously evaluated on two publicly available labeled datasets, i.e., BUSI and UDIAT datasets. The quantitative as well as qualitative results demonstrate that the proposed framework achieved competitive performance with respect to the previous state-of-the-art techniques and outperform the existing breast ultrasound masses segmentation techniques. Most importantly, the study demonstrates the potential of incorporating the additional unlabeled data for improving the performance of breast tumor segmentation.
引用
收藏
页数:10
相关论文
共 46 条
  • [2] Tripled-Uncertainty Guided Mean Teacher Model for Semi-supervised Medical Image Segmentation
    Wang, Kaiping
    Zhan, Bo
    Zu, Chen
    Wu, Xi
    Zhou, Jiliu
    Zhou, Luping
    Wang, Yan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 450 - 460
  • [3] Dual Attention Based Uncertainty-aware Mean Teacher Model for Semi-supervised Cardiac Image Segmentation
    Xu, An
    Wang, Shaoyu
    Fan, Jingyi
    Shi, Xiujin
    Chen, Qiang
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 82 - 86
  • [4] Semi-supervised Semantic Segmentation with Uncertainty-Guided Self Cross Supervision
    Zhang, Yunyang
    Gong, Zhiqiang
    Zhao, Xiaoyu
    Zheng, Xiaohu
    Yao, Wen
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 327 - 343
  • [5] Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation
    Zhang, Yichi
    Jiao, Rushi
    Liao, Qingcheng
    Li, Dongyang
    Zhang, Jicong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 138
  • [6] Semi-supervised NPC segmentation with uncertainty and attention guided consistency
    Hu, Lin
    Li, Jiaxin
    Peng, Xingchen
    Xiao, Jianghong
    Zhan, Bo
    Zu, Chen
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    KNOWLEDGE-BASED SYSTEMS, 2022, 239
  • [7] Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation
    Xiao, Zhiyong
    Su, Yixin
    Deng, Zhaohong
    Zhang, Weidong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [8] Dual Uncertainty-Guided Mixing Consistency for Semi-Supervised 3D Medical Image Segmentation
    Xu, Chenchu
    Yang, Yuan
    Xia, Zhiqiang
    Wang, Boyan
    Zhang, Dong
    Zhang, Yanping
    Zhao, Shu
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (04) : 1156 - 1170
  • [9] Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation
    Peiris, Himashi
    Hayat, Munawar
    Chen, Zhaolin
    Egan, Gary
    Harandi, Mehrtash
    NATURE MACHINE INTELLIGENCE, 2023, 5 (07) : 724 - +
  • [10] Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation
    Himashi Peiris
    Munawar Hayat
    Zhaolin Chen
    Gary Egan
    Mehrtash Harandi
    Nature Machine Intelligence, 2023, 5 : 724 - 738