Turning high-throughput structural biology into predictive inhibitor design

被引:5
|
作者
Saar, Kadi L. [1 ,2 ]
McCorkindale, William [1 ]
Fearon, Daren [3 ]
Boby, Melissa [4 ]
Barr, Haim [5 ]
Ben-Shmuel, Amir [6 ]
London, Nir [7 ]
von Delft, Frank [3 ,8 ,9 ,10 ]
Chodera, John D. [4 ]
Lee, Alpha A. [2 ,11 ]
COVID Moonshot, Alpha A.
机构
[1] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[3] Harwell Sci & Innovat Campus, Diamond Light Source Ltd, Didcot, England
[4] Sloan Kettering Inst, Mem Sloan Kettering Canc Ctr, Computat & Syst Biol Program, New York, NY 10065 USA
[5] Weizmann Inst Sci, Wohl Inst Drug Discovery Nancy, Stephen Grand Israel Natl Ctr Personalized Med, IL-7610001 Rehovot, Israel
[6] Israel Inst Biol Res, Ness Ziona, Israel
[7] Weizmann Inst Sci, Dept Chem & Struct Biol, IL-76100 Rehovot, Israel
[8] Old Rd Campus Res Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, England
[9] Univ Johannesburg, Fac Sci, Auckland Pk, ZA-2006 Johannesburg, South Africa
[10] Res Complex Harwell, Harwell Sci & Innovat Campus, Didcot OX11 0FA, England
[11] PostEra Inc, San Francisco, CA 94111 USA
基金
美国国家卫生研究院;
关键词
machine learning; drug design; crystallography; FREE-ENERGY; PROTEIN;
D O I
10.1073/pnas.2214168120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein- ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein-ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (M-Pro), obtaining parallel measurements of over 200 protein-ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Design of high-throughput methods of protein production for structural biology
    Stevens, RC
    [J]. STRUCTURE, 2000, 8 (09) : R177 - R185
  • [2] The Center for High-Throughput Structural Biology
    Malkowski, M. G.
    Luft, J. R.
    Pangborn, W. A.
    Snell, E. H.
    Weeks, C. M.
    DeTitta, G. T.
    Dumont, M.
    Grayhack, E.
    Merritt, E.
    Phizicky, E.
    Sullivan, M.
    Gruner, S.
    Jurisica, I.
    [J]. BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 2006, 84 (06): : 1069 - 1070
  • [3] The JCSG high-throughput structural biology pipeline
    Elsliger, Marc-Andre
    Deacon, Ashley M.
    Godzik, Adam
    Lesley, Scott A.
    Wooley, John
    Wuethrich, Kurt
    Wilson, Ian A.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2010, 66 : 1137 - 1142
  • [4] NIGMS PSI:Biology Initiative - Enabling High-Throughput Structural Biology and Structural Genomics
    Preusch, Peter C.
    Basavappa, Ravi
    Chin, Jean
    Edmonds, Charles
    Flicker, Paula
    Lewis, Catherine
    Smith, Ward
    Wehrle, Janna
    Berg, Jeremy
    [J]. FASEB JOURNAL, 2010, 24
  • [5] NIGMS PSI: Biology Initiative - Enabling High-Throughput Structural Biology and Structural Genomics
    Smith, Ward
    Ainsztein, Alexandra
    Basavappa, Ravi
    Chin, Jean
    Edmonds, Charles
    Flicker, Paula
    Preusch, Peter
    Wehrle, Janna
    Lewis, Catherine
    Berg, Jeremy
    [J]. FASEB JOURNAL, 2011, 25
  • [6] High-throughput structural biology and drug discovery: opportunities and challenges
    不详
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 577 - 577
  • [7] A Versatile and Efficient High-Throughput Cloning Tool for Structural Biology
    Geertsma, Eric R.
    Dutzler, Raimund
    [J]. BIOCHEMISTRY, 2011, 50 (15) : 3272 - 3278
  • [8] High-throughput structural biology in drug discovery: Protein kinases
    Stout, TJ
    Foster, PG
    Matthews, DJ
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2004, 10 (10) : 1069 - 1082
  • [9] Structural proteomics: Toward high-throughput structural biology as a tool in functional genomics
    Yee, A
    Pardee, K
    Christendat, D
    Savchenko, A
    Edwards, AM
    Arrowsmith, CH
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (03) : 183 - 189
  • [10] Towards high-throughput in situ structural biology using electron cryotomography
    Bohning, Jan
    Bharat, Tanmay A. M.
    [J]. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2021, 160 : 97 - 103