Estimating stem volume of Eucalyptus sp. and Pinus sp. plantations in Brazil, using Sentinel-1B and ALOS-2/PALSAR-2 data

被引:0
|
作者
Ferreira de Souza Diniz, Juliana Maria [1 ]
Gama, Fabio Furlan [1 ]
dos Reis, Aliny Aparecida [2 ]
de Oliveira, Cleber Gonzales [3 ]
Girardi Marques, Eduardo Resende [4 ]
机构
[1] Natl Inst Space Res INPE, Earth Observat Coordinat, Sao Paulo, Brazil
[2] Univ Estadual Campinas, UNICAMP, Interdisciplinary Ctr Energy Planning NIPE, Campinas, Brazil
[3] VISIONA Tecnol Espacial, Sao Paulo, Brazil
[4] KLABIN SA, Telemaco Borba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
multifrequency; machine learning; polarimetry; synthetic aperture radar; WETLAND ECOSYSTEMS; RADAR BACKSCATTER; SCATTERING MODEL; FOREST; SAR; BIOMASS; PALSAR; CLASSIFICATION; COHERENCE; MACHINE;
D O I
10.1117/1.JRS.17.014513
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multifrequency synthetic aperture radar (SAR) data have been applied to discriminate subtle differences in the vegetation and to better characterize its structural properties, since each SAR frequency will interact with the different sections of the vegetation canopy. In this study, our main objective was to evaluate the use of multifrequency Sentinel-1 and ALOS-2/PALSAR-2 data for stem volume estimations in Eucalyptus sp. and Pinus sp. plantations using three different machine learning algorithms: random forest (RF), support vector regression (SVR), and extreme gradient boosting (XGB). Different experiments were carried out using combinations of predictor variables derived from both SAR sensors: backscattering, polarimetric decompositions, and interferometry data, and field data considering specific models for Eucalyptus sp. and Pinus sp. and a generic model comprising all forest plantations data. The machine learning models using predictor variables derived from SAR data achieved moderately high accuracy to predict stem volume, mainly when SAR data were used in combination with stand age (Experiment iv). In the best prediction scenario (Experiment iv), the RF, SVR, and XGB models were able to explain 81.7%, 68.5%, and 81.8% [coefficient of variation (R-2) values] of stem volume variability considering the generic models, respectively. Our results pointed out that the RF algorithm showed the best performance in predicting stem volume with significant good results and easier implementation in comparison with the other two algorithms (SVR and XGB). (c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
下载
收藏
页数:20
相关论文
共 10 条
  • [1] ESTIMATION OF FOREST STEM VOLUME USING ALOS-2 PALSAR-2 SATELLITE IMAGES
    Fransson, Johan E. S.
    Santoro, Maurizio
    Wallerman, Jorgen
    Persson, Henrik J.
    Monteith, Albert R.
    Eriksson, Leif E. B.
    Nilsson, Mats
    Olsson, Hakan
    Soja, Maciej J.
    Ulander, Lars M. H.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5327 - 5330
  • [2] Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data
    Tien Dat Pham
    Yoshino, Kunihiko
    Nga Nhu Le
    Dieu Tien Bui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7761 - 7788
  • [3] ALOS-2 PALSAR-2 ScanSAR and Sentinel-1 data for timely tropical forest disturbance mapping: A case study for Sumatra, Indonesia
    Balling, Johannes
    Slagter, Bart
    van der Woude, Sietse
    Herold, Martin
    Reiche, Johannes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132
  • [4] Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI
    Wang, Chu
    Zhang, Wangfei
    Ji, Yongjie
    Marino, Armando
    Li, Chunmei
    Wang, Lu
    Zhao, Han
    Wang, Mengjin
    FORESTS, 2024, 15 (01):
  • [5] Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam
    Tien Dat Pham
    Nga Nhu Le
    Nam Thang Ha
    Luong Viet Nguyen
    Xia, Junshi
    Yokoya, Naoto
    Tu Trong To
    Hong Xuan Trinh
    Lap Quoc Kieu
    Takeuchi, Wataru
    REMOTE SENSING, 2020, 12 (05)
  • [6] Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 Data for Large-Scale Wildfire-Burned Area Mapping: Insights from the 2017-2019 Canada Wildfires
    Zhang, Puzhao
    Hu, Xikun
    Ban, Yifang
    Nascetti, Andrea
    Gong, Maoguo
    REMOTE SENSING, 2024, 16 (03)
  • [7] Estimation of Aboveground Biomass for Different Forest Types Using Data from Sentinel-1, Sentinel-2, ALOS PALSAR-2, and GEDI. (vol 15, 215, 2024)
    Wang, Chu
    Zhang, Wangfei
    Ji, Yongjie
    Marino, Armando
    Li, Chunmei
    Wang, Lu
    Zhao, Han
    Wang, Mengjin
    FORESTS, 2024, 15 (03):
  • [8] Modelling Green Volume Using Sentinel-1,-2, PALSAR-2 Satellite Data and Machine Learning for Urban and Semi-Urban Areas in Germany
    Lehmler, Sebastian
    Foerster, Michael
    Frick, Annett
    ENVIRONMENTAL MANAGEMENT, 2023, 72 (03) : 657 - 670
  • [9] Modelling Green Volume Using Sentinel-1, -2, PALSAR-2 Satellite Data and Machine Learning for Urban and Semi-Urban Areas in Germany
    Sebastian Lehmler
    Michael Förster
    Annett Frick
    Environmental Management, 2023, 72 : 657 - 670
  • [10] Elucidating key plant growth-promoting (PGPR) traits in Burkholderia sp. Nafp2/4-1b (=SARCC-3049) using gnotobiotic assays and whole-genome-sequence analysis
    Hassen, A. I.
    Khambani, L. S.
    Swanevelder, Z. H.
    Mtsweni, N. P.
    Bopape, F. L.
    vanVuuren, A.
    van der Linde, E. J.
    Morey, L.
    LETTERS IN APPLIED MICROBIOLOGY, 2021, 73 (05) : 658 - 671