Multi-view clustering guided by unconstrained non-negative matrix factorization

被引:12
|
作者
Deng, Ping [1 ]
Li, Tianrui [2 ,3 ,4 ]
Wang, Dexian [2 ]
Wang, Hongjun [2 ]
Peng, Hong [1 ]
Horng, Shi-Jinn [5 ]
机构
[1] Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Peoples R China
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[3] Southwest Jiaotong Univ, Natl Engn Lab Integrated Transportat Big Data Appl, Chengdu 611756, Peoples R China
[4] Mfg Ind Chains Collaborat & Informat Support Techn, Chengdu 611756, Peoples R China
[5] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
基金
中国国家自然科学基金;
关键词
Non -negative matrix factorization; Multi -view clustering; Unconstrained; Element updates; RECOGNITION;
D O I
10.1016/j.knosys.2023.110425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering based on non-negative matrix factorization (NMFMvC) is a well-known method for handling high-dimensional multi-view data. To satisfy the non-negativity constraint of the matrix, NMFMvC is usually solved using the Karush-Kuhn-Tucker (KKT) conditions. However, this optimization method is poorly scalable. To this end, we propose an unconstrained non-negative matrix factorization multi-view clustering (uNMFMvC) model. First, the objective function was constructed by decoupling the elements of the matrix and combining the elements with a non-linear mapping function in a non-negative value domain. The objective function was then optimized using the stochastic gradient descent (SGD) algorithm. Subsequently, three uNMFMvC methods were constructed based on different mapping functions and detailed reasoning was provided. Finally, experiments were conducted on eight public datasets and compared with cutting-edge multi-view clustering methods. The experimental results demonstrate that the proposed model has significant advantages. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Robust multi-view non-negative matrix factorization for clustering
    Liu, Xiangyu
    Song, Peng
    Sheng, Chao
    Zhang, Wenjing
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 123
  • [2] Virtual label guided multi-view non-negative matrix factorization for data clustering
    Liu, Xiangyu
    Song, Peng
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 133
  • [3] Deep multiple non-negative matrix factorization for multi-view clustering
    Du, Guowang
    Zhou, Lihua
    Lu, Kevin
    Ding, Haiyan
    [J]. INTELLIGENT DATA ANALYSIS, 2021, 25 (02) : 339 - 357
  • [4] Dual regularized multi-view non-negative matrix factorization for clustering
    Luo, Peng
    Peng, Jinye
    Guan, Ziyu
    Fan, Jianping
    [J]. NEUROCOMPUTING, 2018, 294 : 1 - 11
  • [5] Deep graph regularized non-negative matrix factorization for multi-view clustering
    Li, Jianqiang
    Zhou, Guoxu
    Qiu, Yuning
    Wang, Yanjiao
    Zhang, Yu
    Xie, Shengli
    [J]. NEUROCOMPUTING, 2020, 390 : 108 - 116
  • [6] Local residual preserving non-negative matrix factorization for multi-view clustering
    Li, Jiaqing
    Kang, Peipei
    Sun, Weijun
    Jiang, Zhikun
    [J]. NEUROCOMPUTING, 2024, 600
  • [7] Multi-modal Multi-view Clustering based on Non-negative Matrix Factorization
    Khalafaoui, Yasser
    Grozavu, Nistor
    Matei, Basarab
    Goix, Laurent-Walter
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1386 - 1391
  • [8] DCCNMF: Deep Complementary and Consensus Non-negative Matrix Factorization for multi-view clustering
    Gunawardena, Sohan
    Luong, Khanh
    Balasubramaniam, Thirunavukarasu
    Nayak, Richi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [9] Multi-view data clustering via non-negative matrix factorization with manifold regularization
    Khan, Ghufran Ahmad
    Hu, Jie
    Li, Tianrui
    Diallo, Bassoma
    Wang, Hongjun
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (03) : 677 - 689
  • [10] Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints
    Liang, Naiyao
    Yang, Zuyuan
    Li, Zhenni
    Sun, Weijun
    Xie, Shengli
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 194