Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework

被引:3
|
作者
Stebani, Jannik [1 ,2 ,3 ,4 ]
Blaimer, Martin [1 ]
Zabler, Simon [1 ,5 ]
Neun, Tilmann [6 ]
Pelt, Danieel M. [7 ]
Rak, Kristen [3 ,4 ]
机构
[1] Fraunhofer Inst Integrated Circuits IIS, Magnet Resonance & Xray Imaging Dept, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Expt Phys 5, D-97074 Wurzburg, Germany
[3] Univ Klinikum Wurzburg, Dept Otorhinolaryngol Plast Aesthet & Reconstrut H, D-97080 Wurzburg, Germany
[4] Univ Klinikum Wurzburg, Comprehens Hearing Ctr, D-97080 Wurzburg, Germany
[5] Deggendorf Inst Technol, Fac Comp Sci, Deggendorf, Germany
[6] Univ Klinikum Wurzburg, Inst Diagnost & Intervent Neuroradiol, D-97080 Wurzburg, Germany
[7] Leiden Univ, Leiden Inst Adv Comp Sci LIACS, NL-2333 CA Leiden, Netherlands
关键词
MEDICAL IMAGE SEGMENTATION; COMPUTED-TOMOGRAPHY; INSERTION DEPTH; COCHLEAR; IMPACT;
D O I
10.1038/s41598-023-45466-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorff distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance benefit of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework
    Jannik Stebani
    Martin Blaimer
    Simon Zabler
    Tilmann Neun
    Daniël M. Pelt
    Kristen Rak
    [J]. Scientific Reports, 13
  • [2] Deep learning for the fully automated segmentation of the inner ear on MRI
    Vaidyanathan, Akshayaa
    van der Lubbe, Marly F. J. A.
    Leijenaar, Ralph T. H.
    van Hoof, Marc
    Zerka, Fadila
    Miraglio, Benjamin
    Primakov, Sergey
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek, Monique A. L.
    Sebastiaan, Hammer
    Dammeijer, Patrick F. M.
    van Rompaey, Vincent
    Woodruff, Henry C.
    Vos, Wim
    Walsh, Sean
    van de Berg, Raymond
    Lambin, Philippe
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Deep learning for the fully automated segmentation of the inner ear on MRI
    Akshayaa Vaidyanathan
    Marly F. J. A. van der Lubbe
    Ralph T. H. Leijenaar
    Marc van Hoof
    Fadila Zerka
    Benjamin Miraglio
    Sergey Primakov
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek
    Hammer Sebastiaan
    Patrick F. M. Dammeijer
    Vincent van Rompaey
    Henry C. Woodruff
    Wim Vos
    Seán Walsh
    Raymond van de Berg
    Philippe Lambin
    [J]. Scientific Reports, 11
  • [4] Towards Automated Dosimetric Analysis of the Bladder Trigone: Deep-Learning -Based Joint Segmentation and Landmark Localization
    Liu, H.
    Neilsen, B. K.
    Xu, D.
    Pham, J.
    Cao, M.
    Ruan, D.
    Kishan, A. U.
    Sheng, K.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : S118 - S118
  • [5] Towards fully automated deep-learning-based brain tumor segmentation: Is brain extraction still necessary?
    Pacheco, Bruno Machado
    Cassia, Guilherme de Souza e
    Silva, Danilo
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [6] Towards a Deep-Learning-Based Framework of Sentinel-2 Imagery for Automated Active Fire Detection
    Zhang, Qi
    Ge, Linlin
    Zhang, Ruiheng
    Metternicht, Graciela Isabel
    Liu, Chang
    Du, Zheyuan
    [J]. REMOTE SENSING, 2021, 13 (23)
  • [7] Deep Learning-Based Fully Automated Detection and Segmentation of Breast Mass
    Yu, Hui
    Bai, Ru
    An, Jiancheng
    Cao, Rui
    [J]. 2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 293 - 298
  • [8] A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation
    Miao, Dong
    Zhao, Ying
    Ren, Xue
    Dou, Meng
    Yao, Yu
    Xu, Yiran
    Cui, Yingchao
    Liu, Ailian
    [J]. IEEE Journal of Translational Engineering in Health and Medicine, 2024, 12 : 697 - 710
  • [9] Deep-learning-based ensemble method for fully automated detection of renal masses on magnetic resonance images
    Anush, Agarwal
    Rohini, Gaikar
    Nicola, Schieda
    WalaaEldin, Elfaal Mohamed
    Eranga, Ukwatta
    [J]. JOURNAL OF MEDICAL IMAGING, 2023, 10 (02)
  • [10] Fully Automated Annotation With Noise-Masked Visual Markers for Deep-Learning-Based Object Detection
    Kiyokawa, Takuya
    Tomochika, Keita
    Takamatsu, Jun
    Ogasawara, Tsukasa
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02): : 1972 - 1977