A modified Euler-Maruyama method for Riemann-Liouville stochastic fractional integro-differential equations

被引:2
|
作者
Zheng, Yu [1 ]
Qian, Siying [1 ]
Arshad, Sadia [2 ]
Huang, Jianfei [1 ]
机构
[1] Yangzhou Univ, Coll Math Sci, Yangzhou, Jiangsu, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
Stochastic fractional integro-differential equations; weakly singular kernels; modified Euler-Maruyama method; convergence;
D O I
10.1080/00949655.2022.2100889
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a modified Euler-Maruyama (EM) method for Riemann-Liouville stochastic fractional integro-differential equations with weakly singular kernels, and then analyse the strong convergence of the proposed EM method. Specifically, we transform the considered stochastic fractional integro-differential equation into its equivalent form of stochastic Volterra integral equations and derive the corresponding modified EM method. Then, the strong convergence 1 - alpha order of the proposed method is established, where alpha is the order of Riemann-Liouville fractional derivative with 0<alpha<1. Finally, numerical experiments are demonstrated to support our theoretical results.
引用
收藏
页码:249 / 265
页数:17
相关论文
共 50 条
  • [1] A fast Euler-Maruyama method for Riemann-Liouville stochastic fractional nonlinear differential equations
    Zhang, Jingna
    Lv, Jingyun
    Huang, Jianfei
    Tang, Yifa
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2023, 446
  • [2] Optimal Convergence Rate of θ-Maruyama Method for Stochastic Volterra Integro-Differential Equations with Riemann-Liouville Fractional Brownian Motion
    Wang, Mengjie
    Dai, Xinjie
    Xiao, Aiguo
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (01) : 202 - 217
  • [3] The fast Euler-Maruyama method for solving multiterm Caputo fractional stochastic delay integro-differential equations
    Guo, Huijiao
    Huang, Jin
    Yang, Yi
    Zhang, Xueli
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [4] Euler-Maruyama approximation for stochastic fractional neutral integro-differential equations with weakly singular kernel
    Asadzade, Javad A.
    Mahmudov, Nazim, I
    [J]. PHYSICA SCRIPTA, 2024, 99 (07)
  • [5] A fast Euler-Maruyama method for fractional stochastic differential equations
    Jingna Zhang
    Yifa Tang
    Jianfei Huang
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 273 - 291
  • [6] A fast Euler-Maruyama method for fractional stochastic differential equations
    Zhang, Jingna
    Tang, Yifa
    Huang, Jianfei
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 273 - 291
  • [7] General decay stability of backward Euler-Maruyama method for nonlinear stochastic integro-differential equations
    Liu, Linna
    Deng, Feiqi
    Qu, Boyang
    Fang, Jianyin
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 135
  • [8] Theoretical and numerical analysis of the Euler-Maruyama method for generalized stochastic Volterra integro-differential equations
    Zhang, Wei
    Liang, Hui
    Gao, Jianfang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 365
  • [9] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [10] STOCHASTIC FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS: WELL-POSEDNESS AND EULER-MARUYAMA APPROXIMATION
    Dai, Xinjie
    Xiao, Aiguo
    Bu, Weiping
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08): : 4231 - 4253