Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction

被引:9
|
作者
Wang, Chunyan [1 ]
Yang, Fulin [1 ]
Feng, Ligang [1 ]
机构
[1] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; WATER-OXIDATION; HIGH-PERFORMANCE; IR; OXIDE; ELECTROCATALYSTS; NANOPARTICLES; ALLOY; ROBUST; STABILITY;
D O I
10.1039/d3nh00156c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
引用
收藏
页码:1174 / 1193
页数:20
相关论文
共 50 条
  • [1] Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis
    Wu, Hongxiang
    Wang, Yibo
    Shi, Zhaoping
    Wang, Xue
    Yang, Jiahao
    Xiao, Meiling
    Ge, Junjie
    Xing, Wei
    Liu, Changpeng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (25) : 13170 - 13189
  • [3] Current Trends of Iridium-Based Catalysts for Oxygen Evolution Reaction in Acidic Water Electrolysis
    Thao, Nguyen Thi Thu
    Jang, Jin Uk
    Nayak, Arpan Kumar
    Han, Hyuksu
    [J]. SMALL SCIENCE, 2024, 4 (01):
  • [4] Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism
    Chen, Ligang
    Zhao, Wei
    Zhang, Juntao
    Liu, Min
    Jia, Yin
    Wang, Ruzhi
    Chai, Maorong
    [J]. SMALL, 2024,
  • [5] Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media
    Strickler, Alaina L.
    Flores, Raul A.
    King, Laurie A.
    Norskov, Jens K.
    Bajdich, Michal
    Jaramillo, Thomas F.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (37) : 34059 - 34066
  • [6] Supported Iridium-based Oxygen Evolution Reaction Electrocatalysts - Recent Developments
    Moriau, Leonard
    Smiljanic, Milutin
    Loncar, Anja
    Hodnik, Nejc
    [J]. CHEMCATCHEM, 2022, 14 (20)
  • [7] Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation
    Li, Wanqing
    Bu, Yunfei
    Ge, Xinlei
    Li, Feng
    Han, Gao-Feng
    Baek, Jong-Beom
    [J]. CHEMSUSCHEM, 2024, 17 (13)
  • [8] Iridium-Based Perovskites as Efficient Oxygen Evolution Reaction Catalysts in Acid Media
    Fadaei, Hossein
    Brown, Carl
    Houlachi, Georges
    Alamdari, Houshang
    [J]. ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (03): : 659 - 671
  • [9] A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media
    Zhang, Ronghuan
    Dubouis, Nicolas
    Ben Osman, Manel
    Yin, Wei
    Sougrati, Moulay T.
    Corte, Daniel A. D.
    Giaume, Domitille
    Grimaud, Alexis
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (14) : 4571 - 4575
  • [10] Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)
    Spoeri, Camillo
    Briois, Pascal
    Hong Nhan Nong
    Reier, Tobias
    Billard, Alain
    Kuehl, Stefanie
    Teschner, Detre
    Strasser, Peter
    [J]. ACS CATALYSIS, 2019, 9 (08) : 6653 - 6663