Automatic knowledge generation for a persuasion dialogue system with enthymemes

被引:0
|
作者
Leiva, Diego S. Orbe [1 ]
Gottifredi, Sebastian [1 ]
Garcia, Alejandro J. [1 ]
机构
[1] Univ Nacl Sur, Inst Comp Sci & Engn UNS CONICET, Dept Comp Sci & Engn, San Andres 800, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Persuasion dialogues; Enthymemes; Knowledge generation; Argumentation; STRUCTURED ARGUMENTATION; STRATEGIC ARGUMENTATION; FRAMEWORK;
D O I
10.1016/j.ijar.2023.108963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persuasion dialogues in multi-agent systems are required in situations in which agents debate to defend their viewpoint on a certain topic. In this work, we introduce a dialogue system for persuasion dialogues in which participants can exchange and complete enthymemes using structured argumentation as the underlying knowledge representation formalism. In our approach, the dialogue system provides the means to create arguments from enthymemes by generating assumptions based solely on the enthymeme's structure. Then, arguments are used to determine the dialectical status of the dialogue. We prove that under minimal restrictions, agents involved in a persuasion dialogue can reach an agreement successfully, and they can acquire knowledge such that their mental model is consistent with the outcome of the dialogue.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Towards a Sound and Complete Dialogue System for Handling Enthymemes
    Xydis, Andreas
    Hampson, Christopher
    Modgil, Sanjay
    Black, Elizabeth
    [J]. LOGIC AND ARGUMENTATION, CLAR 2021, 2021, 13040 : 437 - 456
  • [2] Handling Enthymemes in Time-Limited Persuasion Dialogs
    de Saint-Cyr, Florence Dupin
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, 2011, 6929 : 149 - 162
  • [3] Use of persuasion knowledge by the millennial generation
    Henrie, Kenneth M.
    Taylor, D. Christopher
    [J]. YOUNG CONSUMERS, 2009, 10 (01): : 71 - +
  • [4] An automatic dialogue generation platform for personalized dialogue applications
    Pargellis, AN
    Kuo, HKJ
    Lee, CH
    [J]. SPEECH COMMUNICATION, 2004, 42 (3-4) : 329 - 351
  • [5] Knowledge based automatic simulation model generation system
    Kang, S
    [J]. IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1997, 144 (02): : 88 - 96
  • [6] System Personality and Persuasion in Human-Computer Dialogue
    Andrews, Pierre Y.
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2012, 2 (02)
  • [7] Competent Net Dialogue for Knowledge Generation
    Fahraeus, Eva R.
    Doos, Marianne
    [J]. WMSCI 2008: 12TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VII, PROCEEDINGS, 2008, : 263 - +
  • [8] Contextual Knowledge Learning for Dialogue Generation
    Zheng, Wen
    Milic-Frayling, Natasa
    Zhou, Ke
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 7822 - 7839
  • [9] Knowledge Diffusion for Neural Dialogue Generation
    Liu, Shuman
    Chen, Hongshen
    Ren, Zhaochun
    Feng, Yang
    Liu, Qun
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, 2018, : 1489 - 1498
  • [10] Unsupervised Knowledge Selection for Dialogue Generation
    Chen, Xiuyi
    Chen, Feilong
    Meng, Fandong
    Li, Peng
    Zhou, Jie
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1230 - 1244