Optimization framework for patient-specific modeling under uncertainty

被引:0
|
作者
Mineroff, Joshua [1 ]
Pokuri, Balaji Sesha Sarath [1 ]
Ganapathysubramanian, Baskar [1 ,2 ]
Krishnamurthy, Adarsh [1 ,2 ]
机构
[1] Iowa State Univ, Mech Engn, Ames, IA USA
[2] Iowa State Univ, Mech Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
optimization; patient-specific modeling; reduced order model; surrogate model; uncertainty quantification; LEFT-VENTRICULAR VOLUMES;
D O I
10.1002/cnm.3665
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Estimating a patient-specific computational model's parameters relies on data that is often unreliable and ill-suited for a deterministic approach. We develop an optimization-based uncertainty quantification framework for probabilistic model tuning that discovers model inputs distributions that generate target output distributions. Probabilistic sampling is performed using a surrogate model for computational efficiency, and a general distribution parameterization is used to describe each input. The approach is tested on seven patient-specific modeling examples using CircAdapt, a cardiovascular circulatory model. Six examples are synthetic, aiming to match the output distributions generated using known reference input data distributions, while the seventh example uses real-world patient data for the output distributions. Our results demonstrate the accurate reproduction of the target output distributions, with a correct recreation of the reference inputs for the six synthetic examples. Our proposed approach is suitable for determining the parameter distributions of patient-specific models with uncertain data and can be used to gain insights into the sensitivity of the model parameters to the measured data.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Optimization Framework for Patient-Specific Cardiac Modeling
    Mineroff, Joshua
    Mcculloch, Andrew D.
    Krummen, David
    Ganapathysubramanian, Baskar
    Krishnamurthy, Adarsh
    [J]. CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2019, 10 (04) : 553 - 567
  • [2] Optimization Framework for Patient-Specific Cardiac Modeling
    Joshua Mineroff
    Andrew D. McCulloch
    David Krummen
    Baskar Ganapathysubramanian
    Adarsh Krishnamurthy
    [J]. Cardiovascular Engineering and Technology, 2019, 10 : 553 - 567
  • [3] A framework for the modeling and optimization of process superstructures under uncertainty
    Steimel, J.
    Harrmann, M.
    Schembecker, G.
    Engell, S.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2014, 115 : 225 - 237
  • [4] Geometric uncertainty in patient-specific cardiovascular modeling with convolutional dropout networks
    Maher, Gabriel D.
    Fleeter, Casey M.
    Schiavazzi, Daniele E.
    Marsden, Alison L.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 386
  • [5] An image-based modeling framework for patient-specific computational hemodynamics
    Luca Antiga
    Marina Piccinelli
    Lorenzo Botti
    Bogdan Ene-Iordache
    Andrea Remuzzi
    David A. Steinman
    [J]. Medical & Biological Engineering & Computing, 2008, 46
  • [6] An image-based modeling framework for patient-specific computational hemodynamics
    Antiga, Luca
    Piccinelli, Marina
    Botti, Lorenzo
    Ene-Iordache, Bogdan
    Remuzzi, Andrea
    Steinman, David A.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (11) : 1097 - 1112
  • [7] Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar
    Galappaththige, Suran
    Gray, Richard A.
    Costa, Caroline Mendonca
    Niederer, Steven
    Pathmanathan, Pras
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [8] Inverse modeling framework for characterizing patient-specific microstructural changes in the pulmonary arteries
    Pourmodheji, Reza
    Jiang, Zhenxiang
    Tossas-Betancourt, Christopher
    Figueroa, C. Alberto
    Baek, Seungik
    Lee, Lik-Chuan
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 119
  • [9] Current progress in patient-specific modeling
    Neal, Maxwell Lewis
    Kerckhoffs, Roy
    [J]. BRIEFINGS IN BIOINFORMATICS, 2010, 11 (01) : 111 - 126
  • [10] AUTOMATIC IMAGE-TO-MODEL FRAMEWORK FOR PATIENT-SPECIFIC ELECTROMECHANICAL MODELING OF THE HEART
    Neumann, Dominik
    Mansi, Tommaso
    Grbic, Sasa
    Voigt, Ingmar
    Georgescu, Bogdan
    Kayvanpour, Elham
    Amr, Ali
    Sedaghat-Hamedani, Farbod
    Haas, Jan
    Katus, Hugo
    Meder, Benjamin
    Hornegger, Joachim
    Kamen, Ali
    Comaniciu, Dorin
    [J]. 2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 935 - 938