Divergence-conforming methods for transient double-diffusive flows: a priori and a posteriori error analysis

被引:1
|
作者
Burger, Raimund [1 ,2 ]
Khan, Arbaz [3 ]
Mendez, Paul E. [4 ]
Ruiz-Baier, Ricardo [5 ,6 ,7 ]
机构
[1] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[3] Dept Math, Roorkee 247667, India
[4] Escuela Politec Nacl, Res Ctr Math Modelling MODEMAT, Quito, Ecuador
[5] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
[6] Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personaliz, Moscow, Russia
[7] Univ Adventista Chile, Casilla 7-D, Chillan, Chile
基金
澳大利亚研究理事会;
关键词
a priori and a posteriori error bounds; mixed H(div)-conforming methods; coupled Navier-Stokes and double diffusion; sedimentation and salinity variations; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; NAVIER-STOKES PROBLEM; ADVECTION-DIFFUSION; NATURAL-CONVECTION; DISCRETIZATION; APPROXIMATION; MODEL;
D O I
10.1093/imanum/drad090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analysis of an $\textbf {H}(\textrm {div})$-conforming method for a model of double-diffusive flow in porous media introduced in Burger, Mendez & Ruiz-Baier (2019, On H(div)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal., 57,1318-1343) is extended to the time-dependent case. In addition, the efficiency and reliability of residual-based a posteriori error estimators for the steady, semidiscrete and fully discrete problems are established. The resulting methods are applied to simulate the sedimentation of small particles in salinity-driven flows. The method consists of Brezzi-Douglas-Marini approximations for velocity and compatible piecewise discontinuous pressures, whereas Lagrangian elements are used for concentration and salinity distribution. Numerical tests confirm the properties of the proposed family of schemes and of the adaptive strategy guided by the a posteriori error indicators.
引用
收藏
页码:3520 / 3572
页数:53
相关论文
共 13 条