Adaptive Iterative Hard Thresholding for Least Absolute Deviation Problems with Sparsity Constraints

被引:3
|
作者
Li, Song [1 ]
Liu, Dekai [1 ]
Shen, Yi [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
关键词
Sparsity; Non-smooth optimization; Hard thresholding; Least absolute deviation; One-bit compressed sensing; SIGNAL RECOVERY; REGRESSION; ALGORITHM; SELECTION; PURSUIT;
D O I
10.1007/s00041-022-09984-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Constrained Least absolute deviation (LAD) problems often arise from sparse regression of statistical prediction and compressed sensing literature. It is challenging to solve LAD problems with sparsity constraints directly due to non-smoothness of objective functions and non-convex feasible sets. We provide an adaptive iterative hard thresholding (AIHT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{AIHT}\,}}_1$$\end{document}) method to solve LAD problems with sparsity constraints. The sequence generated by AIHT1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{AIHT}\,}}_1$$\end{document} converges to ground truth linearly under the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} restricted isometry property condition. Then we apply our analysis method to the binary iterative hard thresholding (BIHT) algorithm in one-bit compressed sensing. We obtain a tighter error bound compared with our previous work on BIHT. To some extent, our results can explain the efficiency of BIHT in recovering sparse vectors and make up for the deficiency of the theoretical guarantee of BIHT. Finally, numerical examples demonstrate the validity of our convergence analysis.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Adaptive Iterative Hard Thresholding for Least Absolute Deviation Problems with Sparsity Constraints
    Song Li
    Dekai Liu
    Yi Shen
    [J]. Journal of Fourier Analysis and Applications, 2023, 29
  • [2] A new iterative firm-thresholding algorithm for inverse problems with sparsity constraints
    Voronin, Sergey
    Woerdeman, Hugo J.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 151 - 164
  • [3] A CONVERGENT ITERATIVE HARD THRESHOLDING FOR NONNEGATIVE SPARSITY OPTIMIZATION
    Pan, Lili
    Zhou, Shenglong
    Xiu, Naihua
    Qi, Houduo
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 325 - 353
  • [4] Conjugate Gradient Iterative Hard Thresholding for Structured Sparsity
    Blanchard, Jeffrey D.
    [J]. IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2022, 3 : 387 - 402
  • [5] An iterative thresholding-like algorithm for inverse problems with sparsity constraints in Banach space
    Bredies, K.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (01): : 19 - 26
  • [6] Iterative descent group hard thresholding algorithms for block sparsity
    Chonavel, Thierry
    Aissa-El-Bey, Abdeldjalil
    Hajji, Zahran
    [J]. SIGNAL PROCESSING, 2023, 212
  • [7] ITERATIVE ORTHONORMALIZED PARTIAL LEAST SQUARES WITH SPARSITY CONSTRAINTS
    Munoz-Romero, Sergio
    Arenas-Garcia, Jeronimo
    Gomez-Verdejo, Vanessa
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3387 - 3391
  • [8] Sparse Adaptive Filtering by Iterative Hard Thresholding
    Das, Rajib Lochan
    Chakraborty, Mrityunjoy
    [J]. 2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
  • [9] Multivariate Iterative Hard Thresholding for sparse decomposition with flexible sparsity patterns
    Rencker, Lucas
    Wang, Wenwu
    Plumbley, Mark D.
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 2156 - 2160
  • [10] Stochastic Iterative Hard Thresholding for Graph-structured Sparsity Optimization
    Zhou, Baojian
    Chen, Feng
    Ying, Yiming
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97