Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder (vol 12, 17024, 2022)

被引:0
|
作者
Jung, Yuyeon
Kim, Taewan
Han, Mi-Ryung
Kim, Sejin
Kim, Geunyoung
Lee, Seungchul
Choi, Youn Jin
机构
[1] Soonchunhyang University Bucheon Hospital,Department of Obstetrics and Gynecology
[2] Soonchunhyang University College of Medicine,Department of Mechanical Engineering
[3] Pohang University of Science and Technology (POSTECH),Division of Life Sciences, College of Life Sciences and Bioengineering
[4] Incheon National University,Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine
[5] The Catholic University of Korea,Graduate School of Artificial Intelligence
[6] Pohang University of Science and Technology (POSTECH),Institute of Convergence Research and Education in Advanced Technology
[7] Yonsei University,Cancer Research Institute, College of Medicine
[8] The Catholic University of Korea,undefined
关键词
D O I
10.1038/s41598-023-28524-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Ovarian tumor diagnosis using deep convolutional neural networks and denoising convolutional autoencoder
    Choi, Youn Jin
    Jung, Yuyeon
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [2] Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Yuyeon Jung
    Taewan Kim
    Mi-Ryung Han
    Sejin Kim
    Geunyoung Kim
    Seungchul Lee
    Youn Jin Choi
    [J]. Scientific Reports, 12
  • [3] Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Jung, Yuyeon
    Kim, Taewan
    Han, Mi-Ryung
    Kim, Sejin
    Kim, Geunyoung
    Lee, Seungchul
    Choi, Youn Jin
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Author Correction: Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Yuyeon Jung
    Taewan Kim
    Mi-Ryung Han
    Sejin Kim
    Geunyoung Kim
    Seungchul Lee
    Youn Jin Choi
    [J]. Scientific Reports, 13
  • [5] Image denoising using deep convolutional autoencoder with feature pyramids
    Cetinkaya, Ekrem
    Kirac, M. Furkan
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (04) : 2096 - 2109
  • [6] GLIOBLASTOMA TUMOR SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Liu, Tiffany Ting
    Achrol, Achal
    Rubin, Daniel
    Chang, Steven
    [J]. NEURO-ONCOLOGY, 2017, 19 : 147 - 147
  • [7] Deep Vectorization Convolutional Neural Networks for Denoising in Mammogram Using Enhanced Image
    Kidsumran, Varakorn
    Zheng, Yalin
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2019, 2020, 1065 : 220 - 227
  • [8] Residual learning of deep convolutional neural networks for image denoising
    Shan, Chuanhui
    Guo, Xirong
    Ou, Jun
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2809 - 2818
  • [9] Image denoising via deep residual convolutional neural networks
    Lan, Rushi
    Zou, Haizhang
    Pang, Cheng
    Zhong, Yanru
    Liu, Zhenbing
    Luo, Xiaonan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 1 - 8
  • [10] Image denoising via deep residual convolutional neural networks
    Rushi Lan
    Haizhang Zou
    Cheng Pang
    Yanru Zhong
    Zhenbing Liu
    Xiaonan Luo
    [J]. Signal, Image and Video Processing, 2021, 15 : 1 - 8