Mapping of soil erosion susceptibility using advanced machine learning models at Nghe An, Vietnam

被引:0
|
作者
Nguyen, Chien Quyet [1 ]
Tran, Tuyen Thi [2 ]
Nguyen, Trang Thanh Thi [2 ]
Nguyen, Thuy Ha Thi [3 ,4 ]
Astarkhanova, T. S. [4 ]
Vu, Luong Van [3 ]
Dau, Khac Tai [3 ]
Nguyen, Hieu Ngoc [5 ]
Pham, Giang Huong [6 ]
Nguyen, Duc Dam [7 ]
Prakash, Indra [8 ]
Pham, Binh [7 ]
机构
[1] Hanoi Natl Univ Educ, Fac Geog, Vietnam 136 Xuan Thuy Str, Hanoi, Vietnam
[2] Vinh Univ, Fac Geog, Sch Educ, Vinh, Vietnam
[3] Vinh Univ Vinh, Sch Agr & Resources, Nghe An, Vietnam
[4] Peoples Friendship Univ Russia, Moscow, Russia
[5] Nghe An Univ Econ, Coll Econ, Nghe An, Vietnam
[6] Thai Nguyen Univ Educ, Fac Geog, Thai Nguyen, Vietnam
[7] Univ Transport Technol, Hanoi 100000, Vietnam
[8] DDG R Geol Survey India, Gandhinagar 382010, India
关键词
gradient boosting classifier; machine learning; grid search; soil erosion; Vietnam; SLOPE STEEPNESS; ALGORITHMS; CURVATURE; RISK;
D O I
10.2166/hydro.2023.327
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Soil Erosion Susceptibility Mapping (SESM) is one of the practical approaches for managing and mitigating soil erosion. This study applied four Machine Learning (ML) models namely the Multilayer Perceptron (MLP) classifier, AdaBoost, Ridge classifier, and Gradient Boosting classifier to perform SESM in a region of Nghe An province, Vietnam. The development of these models incorporated seven factors influencing soil erosion: slope degree, slope aspect, curvature, elevation, Normalized Difference Vegetation Index (NDVI), rainfall, and soil type. These factors were determined based on 685 identified soil erosion locations. According to SHapley Additive exPlanations (SHAP) analysis, soil type emerged as the most significant factor influencing soil erosion. Among all the developed models, the Gradient Boosting classifier demonstrated the highest prediction power, followed by the MLP classifier, Ridge classifier, and AdaBoost, respectively. Therefore, the Gradient Boosting classifier is recommended for accurate SESM in other regions too, taking into account the local geo-environmental factors.
引用
收藏
页码:72 / 87
页数:16
相关论文
共 50 条
  • [1] Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models
    Mosavi, Amirhosein
    Sajedi-Hosseini, Farzaneh
    Choubin, Bahram
    Taromideh, Fereshteh
    Rahi, Gholamreza
    Dineva, Adrienn A.
    [J]. WATER, 2020, 12 (07)
  • [2] Flood susceptibility mapping using advanced hybrid machine learning and CyGNSS: a case study of Nghe An province, Vietnam
    Huu Duy Nguyen
    Phương Lan Vu
    Minh Cuong Ha
    Thi Bao Hoa Dinh
    Thuy Hang Nguyen
    Tich Phuc Hoang
    Quang Cuong Doan
    Van Manh Pham
    Dinh Kha Dang
    [J]. Acta Geophysica, 2022, 70 : 2785 - 2803
  • [3] Flood susceptibility mapping using advanced hybrid machine learning and CyGNSS: a case study of Nghe An province, Vietnam
    Huu Duy Nguyen
    Phuong Lan Vu
    Minh Cuong Ha
    Thi Bao Hoa Dinh
    Thuy Hang Nguyen
    Tich Phuc Hoang
    Quang Cuong Doan
    Van Manh Pham
    Dinh Kha Dang
    [J]. ACTA GEOPHYSICA, 2022, 70 (06) : 2785 - 2803
  • [4] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    [J]. Geoscience Frontiers, 2020, 11 (05) : 1609 - 1620
  • [5] Comparison of machine learning models for gully erosion susceptibility mapping
    Alireza Arabameri
    Wei Chen
    Marco Loche
    Xia Zhao
    Yang Li
    Luigi Lombardo
    Artemi Cerda
    Biswajeet Pradhan
    Dieu Tien Bui
    [J]. Geoscience Frontiers , 2020, (05) : 1609 - 1620
  • [6] Comparison of machine learning models for gully erosion susceptibility mapping
    Arabameri, Alireza
    Chen, Wei
    Loche, Marco
    Zhao, Xia
    Li, Yang
    Lombardo, Luigi
    Cerda, Artemi
    Pradhan, Biswajeet
    Dieu Tien Bui
    [J]. GEOSCIENCE FRONTIERS, 2020, 11 (05) : 1609 - 1620
  • [7] Gully Erosion Susceptibility Mapping in Highly Complex Terrain Using Machine Learning Models
    Yang, Annan
    Wang, Chunmei
    Pang, Guowei
    Long, Yongqing
    Wang, Lei
    Cruse, Richard M.
    Yang, Qinke
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [8] Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
    Rahmati, Omid
    Tahmasebipour, Nasser
    Haghizadeh, Ali
    Pourghasemi, Hamid Reza
    Feizizadeh, Bakhtiar
    [J]. GEOMORPHOLOGY, 2017, 298 : 118 - 137
  • [9] Soil erosion susceptibility mapping using ensemble machine learning models: A case study of upper Congo river sub-basin
    Kulimushi, Luc Cimusa
    Bashagaluke, Janvier Bigabwa
    Prasad, Pankaj
    Heri-Kazi, Aim B. Heri-Kazi
    Kushwaha, Nand Lal
    Masroor, Md
    Choudhari, Pandurang
    Elbeltagi, Ahmed
    Sajjad, Haroon
    Mohammed, Safwan
    [J]. CATENA, 2023, 222
  • [10] Susceptibility mapping of groundwater salinity using machine learning models
    Amirhosein Mosavi
    Farzaneh Sajedi Hosseini
    Bahram Choubin
    Fereshteh Taromideh
    Marzieh Ghodsi
    Bijan Nazari
    Adrienn A. Dineva
    [J]. Environmental Science and Pollution Research, 2021, 28 : 10804 - 10817