Uncertainty-aware credit card fraud detection using deep learning

被引:4
|
作者
Habibpour, Maryam [1 ]
Gharoun, Hassan [2 ]
Mehdipour, Mohammadreza
Tajally, Amirreza [3 ]
Asgharnezhad, Hamzeh [5 ]
Shamsi, Afshar [4 ]
Khosravi, Abbas [4 ]
Nahavandi, Saeid [4 ]
机构
[1] Lian Sazeh Corp, Tehran, Iran
[2] Univ Technol Sydney, Fac Engn & IT, Sydney, Australia
[3] Univ Tehran, Coll Engn, Sch Ind Engn, Tehran, Iran
[4] Concordia Univ, Informat Syst Engn, Montreal, PQ, Canada
[5] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Burwood, Vic, Australia
关键词
Fraud detection; Uncertainty quantification; Deep neural networks; NEURAL-NETWORKS; QUANTIFICATION; DROPOUT; MODEL;
D O I
10.1016/j.engappai.2023.106248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Countless research works of deep neural networks (DNNs) in the task of credit card fraud detection have focused on improving the accuracy of point predictions and mitigating unwanted biases by building different network architectures or learning models. Quantifying uncertainty accompanied by point estimation is essential because it mitigates model unfairness and permits practitioners to develop trustworthy systems which abstain from suboptimal decisions due to low confidence. Explicitly, assessing uncertainties associated with DNNs predictions is critical in real-world card fraud detection settings for characteristic reasons, including (a) fraudsters constantly change their strategies, and accordingly, DNNs encounter observations that are not generated by the same process as the training distribution, (b) owing to the time-consuming process, very few transactions are timely checked by professional experts to update DNNs. Therefore, this study proposes three uncertainty quantification (UQ) techniques named Monte Carlo dropout, ensemble, and ensemble Monte Carlo dropout for card fraud detection applied on transaction data. Moreover, to evaluate the predictive uncertainty estimates, UQ confusion matrix and several performance metrics are utilized. Through experimental results, we show that the ensemble is more effective in capturing uncertainty corresponding to generated predictions. Additionally, we demonstrate that the proposed UQ methods provide extra insight to the point predictions, leading to elevate the fraud prevention process.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    [J]. 2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [2] Credit card fraud detection using a deep learning multistage model
    Georgios Zioviris
    Kostas Kolomvatsos
    George Stamoulis
    [J]. The Journal of Supercomputing, 2022, 78 : 14571 - 14596
  • [3] Credit Card Fraud Detection Using Improved Deep Learning Models
    Sulaiman, Sumaya S.
    Nadher, Ibraheem
    Hameed, Sarab M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 1049 - 1069
  • [4] Credit card fraud detection using a deep learning multistage model
    Zioviris, Georgios
    Kolomvatsos, Kostas
    Stamoulis, George
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (12): : 14571 - 14596
  • [5] Fraud Shield: Credit Card Fraud Detection with Ensemble and Deep Learning
    Menon, Pranav Prakash
    Sachdeva, Amit
    Gayathn, V. M.
    [J]. 2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 224 - 230
  • [6] Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches
    Gorte, Ashvini S.
    Mohod, S. W.
    Keole, R. R.
    Mahore, T. R.
    Pande, Sagar
    [J]. INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 621 - 628
  • [7] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    [J]. 2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [8] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [9] Using deep networks for fraud detection in the credit card transactions
    Kazemi, Zahra
    Zarrabi, Houman
    [J]. 2017 IEEE 4TH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2017, : 630 - 633
  • [10] Deep learning-based credit card fraud detection in federated learning
    Reddy, Vadisena Venkata Krishna
    Reddy, Radha Vijaya Kumar
    Munaga, Masthan Siva Krishna
    Karnam, Balaji
    Maddila, Suresh Kumar
    Kolli, Chandra Sekhar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255