Singular value and norm inequalities involving the numerical radii of matrices

被引:0
|
作者
Al-Natoor, Ahmad [1 ]
Hirzallah, Omar [2 ]
Kittaneh, Fuad [3 ]
机构
[1] Isra Univ, Fac Sci, Dept Math, Amman 11622, Jordan
[2] Hashemite Univ, Fac Sci, Dept Math, Zarqa, Jordan
[3] Univ Jordan, Dept Math, Amman, Jordan
关键词
Singular value; Spectral norm; Numerical radius; Unitarily invariant norm; Positive semidefinite matrix; Accretive-dissipative matrix; Normal matrix; Inequality;
D O I
10.1007/s43034-023-00311-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if A, B, X, and Y are n x n complex matrices, such that X and Y are positive semidefinite, then s(j) (AXB* + BYA*) <= (||A|| ||B|| + omega (A*B)) s(j) (X circle plus Y) for j = 1, 2, . . . , n, and if A is accretive-dissipative, then |||A*XA - AXA*||| <= 3 omega(2) (A) |||X||| for every unitarily invariant norm, where s(j) (T), ||T||, and omega(T) are the j(th) largest singular value of T, the spectral norm of T, and the numerical radius of T, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Singular value and norm inequalities involving the numerical radii of matrices
    Ahmad Al-Natoor
    Omar Hirzallah
    Fuad Kittaneh
    [J]. Annals of Functional Analysis, 2024, 15
  • [2] Norm inequalities involving the weighted numerical radii of operators
    Alrimawi, Fadi
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 657 : 127 - 146
  • [3] Singular value and norm inequalities for products and sums of matrices
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 204 - 217
  • [4] Singular value and unitarily invariant norm inequalities for matrices
    Al-Natoor, Ahmad
    Hirzallah, Omar
    Kittaneh, Fuad
    [J]. ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [5] Singular value and norm inequalities for products and sums of matrices
    Ahmad Al-Natoor
    Omar Hirzallah
    Fuad Kittaneh
    [J]. Periodica Mathematica Hungarica, 2024, 88 : 204 - 217
  • [6] Singular value and norm inequalities for positive semidefinite matrices
    Al-Natoor, Ahmad
    Kittaneh, Fuad
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4498 - 4507
  • [7] SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Drury, Stephen
    Lin, Minghua
    [J]. OPERATORS AND MATRICES, 2014, 8 (04): : 1143 - 1148
  • [8] Singular Value and Matrix Norm Inequalities between Positive Semidefinite Matrices and Their Blocks
    Zhang, Feng
    Ma, Rong
    Zhang, Chunwen
    Cao, Yuxin
    [J]. JOURNAL OF MATHEMATICS, 2024, 2024
  • [9] More inequalities on numerical radii of sectorial matrices
    Yang, Chaojun
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3927 - 3939
  • [10] Inequalities for norms and numerical radii of operator matrices
    Kittaneh, Fuad
    Rashid, M. H. M.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)