Effect of discharge parameters on electric-spark deposition material transfer

被引:0
|
作者
Hou, Yujie [1 ,2 ,3 ,4 ]
Han, Hongbiao [1 ,2 ,3 ]
Zheng, Guangzhen [1 ,2 ,3 ]
Zhang, Peng [1 ,2 ,3 ]
Tian, Qinhui [1 ,2 ,3 ]
机构
[1] Henan Univ Sci & Technol, Sch Mechatron Engn, Luoyang, Peoples R China
[2] Henan Key Lab Machinery Design & Transmiss Syst, Luoyang, Peoples R China
[3] Longmen Lab, Luoyang, Peoples R China
[4] Henan Univ Sci & Technol, Sch Mechatron Engn, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
Electro-spark deposition; discharge parameters; automatic control; single chip microcomputer; discharge type;
D O I
10.1177/09544062231179088
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In order to study the influence of discharge parameters on the electric spark deposition process, an automatic electric spark deposition device is built by a closed-loop control system of discharge parameters. An automatic electric spark deposition test is carried out at different control voltages. By analyzing the effective discharge waveform parameters, transfer efficiency, deposition efficiency, contact force in the deposition process, surface morphology, and cross-sectional morphology of the deposition layer under different control voltages, etc. Analysis of the results shows that changing the control voltage has a direct effect on the number of discharge types in the deposition process. With the appropriate control voltage, better transfer efficiency and deposition quality can be achieved. Contact discharge has a greater effect on material transfer efficiency than other types of discharge. The transfer of the electrode to the material on the workpiece is mainly achieved by contact discharge. Automatic control of discharge parameters can also be applied to automatic control of discharge pulse types.
引用
收藏
页码:1142 / 1148
页数:7
相关论文
共 50 条
  • [1] Effect of rotating electrode contact force on discharge parameters and material transfer in electric-spark deposition
    Li M.
    Han H.
    Li S.
    Hou Y.
    [J]. Hanjie Xuebao/Transactions of the China Welding Institution, 2023, 44 (01): : 71 - 77
  • [2] Multifocal electric-spark discharge in liquids
    Teslenko, VS
    Zhukov, AI
    Mitrofanov, VV
    [J]. PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1995, 21 (18): : 20 - 26
  • [3] EFFECT OF DISCHARGING ENERGY ON ELECTRIC-SPARK DISCHARGE GRAPHITIZATION OF CARBON
    HONDA, H
    KOBAYASH.K
    [J]. CARBON, 1967, 5 (01) : 1 - &
  • [4] CHOICE OF ELECTRODE MATERIAL AND MASS TRANSFER IN ELECTRIC-SPARK ALLOYING.
    Verkhoturov, A.D.
    Podchernyaeva, I.A.
    Gorbunov, Yu.A.
    Egorov, F.F.
    [J]. Soviet powder metallurgy and metal ceramics, 1985, 24 (02): : 122 - 125
  • [5] Effect of pulse duration and size of interelectrode interval on electric-spark spraying. I. Effect of pulse duration and size of interelectrode interval on rate of electric-spark transfer
    V. D. Belik
    R. V. Litvin
    M. S. Koval’chenko
    [J]. Powder Metallurgy and Metal Ceramics, 2006, 45 : 593 - 598
  • [6] Effect of pulse duration and size of interelectrode interval on electric-spark spraying. I. Effect of pulse duration and size of interelectrode interval on rate of electric-spark transfer
    Belik, V. D.
    Litvin, R. V.
    Koval'chenko, M. S.
    [J]. POWDER METALLURGY AND METAL CERAMICS, 2006, 45 (11-12) : 593 - 598
  • [7] EFFECT OF ALUMINUM OF SENSITIVITY AND ELECTRIC-SPARK IGNITION OF EXPLOSIVES
    MELNIKOV, MA
    NIKITIN, VV
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 1972, 8 (04) : 396 - 400
  • [8] Features of Formation of Electric-Spark Discharge Multilayer Coatings on Armco Iron
    Khranovs'ka, K. M.
    [J]. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2011, 33 (02): : 233 - 237
  • [9] Electric-Spark Initiation of Nanothermites
    Dolgoborodov, A. Yu.
    Yankovskii, B. D.
    Arsenov, P. A.
    Anan'ev, S. Yu.
    Grishin, L. I.
    Val'yano, G. E.
    Borodina, T. I.
    Vakorina, G. S.
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 2023, 59 (04) : 471 - 478
  • [10] Electric-Spark Initiation of Nanothermites
    A. Yu. Dolgoborodov
    B. D. Yankovskii
    P. A. Arsenov
    S. Yu. Anan’ev
    L. I. Grishin
    G. E. Val’yano
    T. I. Borodina
    G. S. Vakorina
    [J]. Combustion, Explosion, and Shock Waves, 2023, 59 : 471 - 478