Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study

被引:5
|
作者
Mirshafiee, Fatemehsadat [1 ]
Shahbazi, Emad [2 ]
Safi, Mohadeseh [3 ]
Rituraj, Rituraj [4 ]
机构
[1] KN Toosi Univ Technol, Dept Elect & Comp Engn, Tehran 1999143344, Iran
[2] Amirkabir Univ Technol, Dept Mechatron, Tehran 158754413, Iran
[3] Univ Tehran, Dept Mechatron Elect & Comp Engn, Tehran 1416634793, Iran
[4] Obuda Univ, Fac Informat, Doctoral Sch Appl Informat & Appl Math, H-1023 Budapest, Hungary
关键词
hydrogen production; renewable energy; green energy; simulation; FLOW-3D; electrical power; CONTROL-SYSTEM; MODEL;
D O I
10.3390/en16010502
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from the FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review
    Faiaz Ahsan
    Nazia Hasan Dana
    Subrata K. Sarker
    Li Li
    S. M. Muyeen
    Md. Firoj Ali
    Zinat Tasneem
    Md. Mehedi Hasan
    Sarafat Hussain Abhi
    Md. Robiul Islam
    Md. Hafiz Ahamed
    Md. Manirul Islam
    Sajal K. Das
    Md. Faisal R. Badal
    Prangon Das
    [J]. Protection and Control of Modern Power Systems, 2023, 8
  • [2] Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review
    Ahsan, Faiaz
    Dana, Nazia Hasan
    Sarker, Subrata K.
    Li, Li
    Muyeen, S. M.
    Ali, Md. Firoj
    Tasneem, Zinat
    Hasan, Md. Mehedi
    Abhi, Sarafat Hussain
    Islam, Md. Robiul
    Ahamed, Md. Hafiz
    Islam, Md. Manirul
    Das, Sajal K.
    Badal, Md. Faisal R.
    Das, Prangon
    [J]. PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2023, 8 (01)
  • [3] Data-driven optimal planning for hybrid renewable energy system management in smart campus: A case study
    Ajiboye, Ayooluwa A.
    Popoola, Segun, I
    Adewuyi, Oludamilare Bode
    Atayero, Aderemi A.
    Adebisi, Bamidele
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [4] Editorial: Advanced data-driven methods and applications for smart power and energy systems
    Liu, Jun
    Jiao, Zaibin
    Chen, Chen
    Duan, Chao
    Pang, Chengzong
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [5] Editorial: Advanced data-driven methods and applications for smart grid
    Liu, Jun
    Duan, Chao
    Pang, Chengzong
    Chen, Chen
    Jiao, Zaibin
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [6] Purely Data-driven Approaches to Trading of Renewable Energy Generation
    Mazzi, Nicolo
    Pinson, Pierre
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2016,
  • [7] A Data-Driven Architecture for Smart Renewable Energy Microgrids in Non-Interconnected Zones: A Colombian Case Study
    Colmenares-Quintero, Ramon Fernando
    Maestre-Gongora, Gina
    Valderrama-Riveros, Oscar Camilo
    Baquero-Almazo, Marieth
    Stansfield, Kim E.
    [J]. ENERGIES, 2023, 16 (23)
  • [8] A Comparative Study of Data-Driven Power Grid Cascading Failure Prediction Methods
    Uwamahoro, Nathalie
    Eftekharnejad, Sara
    [J]. 2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [9] A data-driven analysis of renewable energy management: a case study of wind energy technology
    Altuntas, Fatma
    Gok, Mehmet Sahin
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (06): : 4133 - 4152
  • [10] A data-driven analysis of renewable energy management: a case study of wind energy technology
    Fatma Altuntas
    Mehmet Sahin Gok
    [J]. Cluster Computing, 2023, 26 : 4133 - 4152