Finite element solution of crack-tip fields for an elastic porous solid with density-dependent material moduli and preferential stiffness
被引:0
|
作者:
Yoon, Hyun C.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources, Marine Geol & Energy Div, 124 Gwahak Ro, Daejeon 34132, South KoreaKorea Inst Geosci & Mineral Resources, Marine Geol & Energy Div, 124 Gwahak Ro, Daejeon 34132, South Korea
Yoon, Hyun C.
[1
]
Mallikarjunaiah, S. M.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX USAKorea Inst Geosci & Mineral Resources, Marine Geol & Energy Div, 124 Gwahak Ro, Daejeon 34132, South Korea
Mallikarjunaiah, S. M.
[2
]
Bhatta, Dambaru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX USAKorea Inst Geosci & Mineral Resources, Marine Geol & Energy Div, 124 Gwahak Ro, Daejeon 34132, South Korea
Bhatta, Dambaru
[3
]
机构:
[1] Korea Inst Geosci & Mineral Resources, Marine Geol & Energy Div, 124 Gwahak Ro, Daejeon 34132, South Korea
[2] Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX USA
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX USA
Density-dependent material moduli;
preferential stiffness;
crack-tip field;
nonlinear elasticity;
finite element method;
STRAIN;
EQUATIONS;
POROSITY;
FRACTURE;
CONTEXT;
STRESS;
MODELS;
BODIES;
D O I:
10.1177/16878132241231792
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
In this paper, the finite element solutions of crack-tip fields for an elastic porous solid with density-dependent material moduli are presented. Unlike the classical linearized case in which material parameters are globally constant under a small strain regime, the stiffness of the model presented in this paper can depend upon the density with a modeling parameter. The proposed constitutive relationship appears linear in the Cauchy stress and linearized strain independently. From a subclass of the implicit constitutive relation, the governing equation is bestowed via the balance of linear momentum, resulting in a quasi-linear partial differential equation (PDE) system. Using the classical damped Newton's method, the sequence of linear problems is then obtained, and the linear PDEs are discretized through a bilinear continuous Galerkin-type finite element method. We perform a series of numerical simulations for material bodies with a single edge-crack subject to a variety of loading types (i.e. the pure mode-I, II, and mixed-mode). Numerical solutions demonstrate that the modeling parameter in our proposed model can control preferential mechanical stiffness with its sign and magnitude along with the change of volumetric strain. This study can provide a mathematical and computational foundation to further model the quasi-static and dynamic evolution of cracks, utilizing the density-dependent moduli model and its modeling framework.
机构:
Texas A&M Univ San Antonio, Dept Math Phys & Engn Sci, San Antonio, TX 78224 USATexas A&M Univ San Antonio, Dept Math Phys & Engn Sci, San Antonio, TX 78224 USA
Gou, Kun
Mallikarjunaiah, S. M.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX 78412 USATexas A&M Univ San Antonio, Dept Math Phys & Engn Sci, San Antonio, TX 78224 USA