Physics-informed Neural Network for Quadrotor Dynamical Modeling

被引:3
|
作者
Gu, Weibin [1 ]
Primatesta, Stefano [2 ]
Rizzo, Alessandro [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Politecn Torino, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, Turin 10129, Italy
关键词
Physics-informed neural network; Learning-based dynamical modeling; Interpretability; Unmanned aerial vehicle; UAVS;
D O I
10.1016/j.robot.2023.104569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The explosive growth of civil applications of Unmanned Aerial Vehicles (UAVs) calls for control algorithms that enable safe and trustworthy operations, especially in complex environments to facilitate real-world deployment. Although Model-Based Control (MBC) has found great applicability in the last decades, it relies heavily on the accuracy of the underlying mathematical models. Thanks to their powerful approximation capability, data driven approaches such as Artificial Neural Networks (ANNs) have raised a great interest in UAV dynamical modeling in recent years. Despite the promising results achieved in learning either full or partial dynamics such as aerodynamic effects, prior studies merely pay little to no attention to the black-box nature of ANNs, yielding poorly interpretable learning processes and implying a lack of generalization capability due to undesirably learned spurious relationships among features and labels. While nowadays practitioners and society are far from being concerned just with performance, such risk evidently reduces the overall trustworthiness of the control system with ANNs as control-oriented models. With the goal of both accurate and interpretable neural modeling of nonlinear dynamics, we propose a novel modeling approach that utilizes Physics-Informed Neural Networks (PINN), designed to seamlessly embed physical laws into Deep Neural Networks (DNN). To further enhance model interpretability, we adopt the Covariance Confidence Ellipse (CCE) as post-hoc visualization to help understand the model behavior. We also set up a visual and physical simulator based on AirSim with custom implementation on quadrotor ground effect, which is made publicly available to facilitate further experiments for the community. An extensive simulation campaign validates our approach on data sets including aerodynamics and periodic wind, highlighting advantages regarding the accuracy and physical consistency, pointing to further insight on the development of learning-based control-oriented models for quadrotors, and facilitating flight controller design with performance guarantees.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Physics-Informed Recurrent Neural Network for RRAM Modeling
    Sha, Yanliang
    Lan, Jun
    Li, Yida
    Chen, Quan
    [J]. ELECTRONICS, 2023, 12 (13)
  • [2] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [3] Parameter estimation and modeling of nonlinear dynamical systems based on Runge–Kutta physics-informed neural network
    Weida Zhai
    Dongwang Tao
    Yuequan Bao
    [J]. Nonlinear Dynamics, 2023, 111 : 21117 - 21130
  • [4] Physics-informed neural nets for control of dynamical systems
    Antonelo, Eric Aislan
    Camponogara, Eduardo
    Seman, Laio Oriel
    Jordanou, Jean Panaioti
    Souza, Eduardo Rehbein de
    Huebner, Jomi Fred
    [J]. NEUROCOMPUTING, 2024, 579
  • [5] Inherently Interpretable Physics-Informed Neural Network for Battery Modeling and Prognosis
    Wang, Fujin
    Zhi, Quanquan
    Zhao, Zhibin
    Zhai, Zhi
    Liu, Yingkai
    Xi, Huan
    Wang, Shibin
    Chen, Xuefeng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [6] PHYSICS-INFORMED NEURAL NETWORK MODELING APPROACH FOR MISTUNED BLADED DISKS
    Kelly, Sean T.
    Epureanu, Bogdan I.
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 11B, 2023,
  • [7] Physics-informed deep neural network for modeling the chloride diffusion in concrete
    Shaban, Wafaa Mohamed
    Elbaz, Khalid
    Zhou, Annan
    Shen, Shui-Long
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [8] Parameter estimation and modeling of nonlinear dynamical systems based on Runge-Kutta physics-informed neural network
    Zhai, Weida
    Tao, Dongwang
    Bao, Yuequan
    [J]. NONLINEAR DYNAMICS, 2023, 111 (22) : 21117 - 21130
  • [9] MODELING THE BURNING OF POLYMER MATRIX: TRAINING COLLOCATION PHYSICS-INFORMED NEURAL NETWORK
    Ghaderi, Aref
    Dargazany, Roozbeh
    [J]. PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 9, 2022,
  • [10] DIFFUSION ON FRACTAL OBJECTS MODELING AND ITS PHYSICS-INFORMED NEURAL NETWORK SOLUTION
    Zhao, Dazhi
    Yu, Guozhu
    Li, Weibin
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (03)