Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision

被引:20
|
作者
Vromman, Marieke [1 ]
Anckaert, Jasper [1 ]
Bortoluzzi, Stefania [2 ]
Buratin, Alessia [2 ]
Chen, Chia-Ying [3 ]
Chu, Qinjie [4 ,5 ]
Chuang, Trees-Juen [3 ]
Dehghannasiri, Roozbeh [6 ]
Dieterich, Christoph [7 ]
Dong, Xin [8 ]
Flicek, Paul [9 ]
Gaffo, Enrico [2 ]
Gu, Wanjun [10 ]
He, Chunjiang [8 ]
Hoffmann, Steve [11 ]
Izuogu, Osagie [9 ]
Jackson, Michael S. [12 ]
Jakobi, Tobias [13 ]
Lai, Eric C. [14 ]
Nuytens, Justine [1 ]
Salzman, Julia [6 ]
Santibanez-Koref, Mauro [12 ]
Stadler, Peter [15 ]
Thas, Olivier [16 ]
Eynde, Eveline Vanden [1 ]
Verniers, Kimberly [1 ]
Wen, Guoxia [17 ]
Westholm, Jakub [18 ]
Yang, Li [19 ,20 ]
Ye, Chu-Yu [4 ,5 ]
Yigit, Nurten [1 ]
Yuan, Guo-Hua [21 ]
Zhang, Jinyang
Zhao, Fangqing [22 ]
Vandesompele, Jo [1 ,22 ]
Volders, Pieter-Jan [1 ]
机构
[1] Univ Ghent, Canc Res Inst Ghent CRIG, Dept Biomol Med, OncoRNALab, Ghent, Belgium
[2] Univ Padua, Dept Mol Med, Padua, Italy
[3] Acad Sinica, Genom Res Ctr, Taipei City, Taiwan
[4] Zhejiang Univ, Inst Crop Sci, Hangzhou, Zhejiang, Peoples R China
[5] Zhejiang Univ, Inst Bioinformat, Hangzhou, Zhejiang, Peoples R China
[6] Stanford Univ, Dept Biomed Data Sci & Biochem, Stanford, CA USA
[7] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, German Ctr Cardiovasc Res DZHK, Dept Internal Med 3, Heidelberg, Germany
[8] Wuhan Univ, Sch Basic Med Sci, Dept Med Genet, Wuhan, Peoples R China
[9] EMBL EBI, Hinxton, England
[10] Nanjing Univ Chinese Med, Collaborat Innovat Ctr Jiangsu Prov Canc Prevent &, Sch Artificial Intelligence & Informat Technol, Nanjing, Peoples R China
[11] Leibniz Inst Aging, Fritz Lipmann Inst FLI, Computat Biol Grp, Jena, Germany
[12] Newcastle Univ, Biosci Inst, Fac Med Sci, Newcastle Upon Tyne, England
[13] Univ Arizona, Coll Med Phoenix, Translat Cardiovasc Res Ctr, Phoenix, AZ USA
[14] Sloan Kettering Inst, New York, NY USA
[15] Univ Leipzig, Dept Comp Sci, Bioinformat Grp, Leipzig, Germany
[16] Hasselt Univ, Data Sci Inst, I Biostat, Hasselt, Belgium
[17] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing, Peoples R China
[18] Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Natl Bioinformat Infrastructure Sweden, Stockholm, Sweden
[19] Fudan Univ Fudan, Childrens Hosp, Ctr Mol Med, Fudan, Peoples R China
[20] Fudan Univ, Inst Biomed Sci, Shanghai Key Lab Med Epigenet, Int Lab Med Epigenet & Metab,Minist Sci & Technol, Fudan, Peoples R China
[21] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Computat Biol, Shanghai, Peoples R China
[22] Chinese Acad Sci, Beijing Inst Life Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 比利时弗兰德研究基金会; 美国国家科学基金会; 英国惠康基金;
关键词
CIRCULAR RNAS; IDENTIFICATION; FUSION; TRANS;
D O I
10.1038/s41592-023-01944-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation. This study describes benchmarking and validation of computational tools for detecting circRNAs, finding most to be highly precise with variations in sensitivity and total detection. The study also finds over 315,000 putative human circRNAs.
引用
收藏
页码:1159 / +
页数:15
相关论文
共 50 条
  • [1] Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision
    Marieke Vromman
    Jasper Anckaert
    Stefania Bortoluzzi
    Alessia Buratin
    Chia-Ying Chen
    Qinjie Chu
    Trees-Juen Chuang
    Roozbeh Dehghannasiri
    Christoph Dieterich
    Xin Dong
    Paul Flicek
    Enrico Gaffo
    Wanjun Gu
    Chunjiang He
    Steve Hoffmann
    Osagie Izuogu
    Michael S. Jackson
    Tobias Jakobi
    Eric C. Lai
    Justine Nuytens
    Julia Salzman
    Mauro Santibanez-Koref
    Peter Stadler
    Olivier Thas
    Eveline Vanden Eynde
    Kimberly Verniers
    Guoxia Wen
    Jakub Westholm
    Li Yang
    Chu-Yu Ye
    Nurten Yigit
    Guo-Hua Yuan
    Jinyang Zhang
    Fangqing Zhao
    Jo Vandesompele
    Pieter-Jan Volders
    [J]. Nature Methods, 2023, 20 : 1159 - 1169
  • [2] In silico benchmarking of metagenomic tools for coding sequence detection reveals the limits of sensitivity and precision
    Jonathan Louis Golob
    Samuel Schwartz Minot
    [J]. BMC Bioinformatics, 21
  • [3] In silico benchmarking of metagenomic tools for coding sequence detection reveals the limits of sensitivity and precision
    Golob, Jonathan Louis
    Minot, Samuel Schwartz
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [4] Benchmarking for, large-scale placement and beyond
    Adya, AN
    Yildiz, MC
    Markov, IL
    Villarrubia, PG
    Parakh, PN
    Madden, PH
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2004, 23 (04) : 472 - 487
  • [5] Large-Scale Precision Machining
    不详
    [J]. MANUFACTURING ENGINEERING, 2010, 144 (01): : 27 - 28
  • [6] Benchmarking a large-scale FIR dataset for on-road pedestrian detection
    Xu, Zhewei
    Zhuang, Jiajun
    Liu, Qiong
    Zhou, Jingkai
    Peng, Shaowu
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 199 - 208
  • [7] Benchmarking Large-scale Object Storage Servers
    Lee, Jaemyoun
    Song, Chang
    Kang, Kyungtae
    [J]. PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS (COMPSAC), VOL 2, 2016, : 594 - 595
  • [8] Generating Large-Scale Heterogeneous Graphs for Benchmarking
    Gupta, Amarnath
    [J]. SPECIFYING BIG DATA BENCHMARKS, 2014, 8163 : 113 - 128
  • [9] A methodology for scientific benchmarking with large-scale applications
    Armstrong, B
    Eigenmann, R
    [J]. PERFORMANCE EVALUATION AND BENCHMARKING WITH REALISTIC APPLICATIONS, 2001, : 109 - 127
  • [10] Improved tools for large-scale bioprocessing
    Dutton, G
    [J]. GENETIC ENGINEERING NEWS, 2000, 20 (07): : 11 - +