Solvability of Hessian quotient equations in exterior domains

被引:1
|
作者
Dai, Limei [1 ]
Bao, Jiguang [2 ]
Wang, Bo [3 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
Hessian quotient equations; exterior Dirichlet problem; radially symmetric solutions; asymptotic behavior; necessary and sufficient conditions; MONGE-AMPERE EQUATION; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.4153/S0008414X23000834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Dirichlet problem of Hessian quotient equations of the form $S_k(D<^>2u)/S_l(D<^>2u)=g(x)$ in exterior domains. For $g\equiv \mbox {const.}$, we obtain the necessary and sufficient conditions on the existence of radially symmetric solutions. For g being a perturbation of a generalized symmetric function at infinity, we obtain the existence of viscosity solutions by Perron's method. The key technique we develop is the construction of sub- and supersolutions to deal with the non-constant right-hand side g.
引用
收藏
页数:31
相关论文
共 50 条