Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis

被引:4
|
作者
Ma, Chenchen [1 ]
de la Torre, Jimmy [2 ]
Xu, Gongjun [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48108 USA
[2] Univ Hong Kong, Hong Kong, Peoples R China
关键词
cognitive diagnosis; likelihood estimation; nonparametric estimation; LATENT CLASS MODELS; DINA MODEL; RULE-SPACE; CLASSIFICATION; IDENTIFIABILITY; FAMILY;
D O I
10.1007/s11336-022-09878-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A number of parametric and nonparametric methods for estimating cognitive diagnosis models (CDMs) have been developed and applied in a wide range of contexts. However, in the literature, a wide chasm exists between these two families of methods, and their relationship to each other is not well understood. In this paper, we propose a unified estimation framework to bridge the divide between parametric and nonparametric methods in cognitive diagnosis to better understand their relationship. We also develop iterative joint estimation algorithms and establish consistency properties within the proposed framework. Lastly, we present comprehensive simulation results to compare different methods and provide practical recommendations on the appropriate use of the proposed framework in various CDM contexts.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 50 条
  • [1] Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis
    Chenchen Ma
    Jimmy de la Torre
    Gongjun Xu
    Psychometrika, 2023, 88 : 51 - 75
  • [2] Parametric and nonparametric population methods
    Proost, Johannes H.
    Eleveld, Douglas J.
    CLINICAL PHARMACOKINETICS, 2006, 45 (08) : 851 - 852
  • [3] Parametric and Nonparametric Population Methods
    Johannes H. Proost
    Douglas J. Eleveld
    Clinical Pharmacokinetics, 2006, 45 : 851 - 852
  • [4] Nonparametric methods for cognitive diagnosis to multiple-choice test items
    Guo Lei
    Zhou Wenjie
    ACTA PSYCHOLOGICA SINICA, 2021, 53 (09) : 1032 - 1043
  • [5] Parametric and nonparametric methods for comparing groups
    Vargha, A
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2000, 35 (3-4) : 280 - 280
  • [6] Nonparametric and parametric methods of spectral analysis
    Zhao, Hangfang
    Gui, Lin
    2ND FRANCO-CHINESE ACOUSTIC CONFERENCE (FCAC 2018), 2019, 283
  • [7] Why preferring parametric forecasting to nonparametric methods?
    Jabot, Franck
    JOURNAL OF THEORETICAL BIOLOGY, 2015, 372 : 205 - 210
  • [8] Nonlinear time series: Nonparametric and parametric methods
    Gao, J
    AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2005, 49 (02) : 236 - 238
  • [9] Parametric and nonparametric bootstrap methods for general MANOVA
    Konietschke, Frank
    Bathke, Arne C.
    Harrar, Solomon W.
    Pauly, Markus
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 291 - 301
  • [10] Nonlinear time series nonparametric and parametric methods
    Javaheri, A
    QUANTITATIVE FINANCE, 2004, 4 (01) : C16 - C16