An Infrared and Visible Image Fusion Algorithm Method Based on a Dual Bilateral Least Squares Hybrid Filter

被引:4
|
作者
Lu, Quan [1 ]
Han, Zhuangding [1 ]
Hu, Likun [1 ]
Tian, Feiyu [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
image fusion; bilateral filter; least squares; ResNet50; structure tensor; FAULT-DIAGNOSIS; NETWORK;
D O I
10.3390/electronics12102292
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infrared and visible images of the same scene are fused to produce a fused image with richer information. However, most current image-fusion algorithms suffer from insufficient edge information retention, weak feature representation, and poor contrast, halos, and artifacts, and can only be applied to a single scene. To address these issues, we propose a novel infrared and visual image fusion algorithm based on a bilateral-least-squares hybrid filter (DBLSF) with the least-squares and bilateral filter hybrid model (BLF-LS). The proposed algorithm utilizes the residual network ResNet50 and the adaptive fusion strategy of the structure tensor to fuse the base and detail layers of the filter decomposition, respectively. Experiments on 32 sets of images from the TNO image-fusion dataset show that, although our fusion algorithm sacrifices overall time efficiency, the Combination 1 approach can better preserve image edge information and image integrity; reduce the loss of source image features; suppress artifacts and halos; and compare favorably with other algorithms in terms of structural similarity, feature similarity, multiscale structural similarity, root mean square error, peak signal-to-noise ratio, and correlation coefficient by at least 2.71%, 1.86%, 0.09%, 0.46%, 0.24%, and 0.07%; and the proposed Combination 2 can effectively improve the contrast and edge features of the fused image and enrich the image detail information, with an average improvement of 37.42%, 26.40%, and 26.60% in the three metrics of average gradient, edge intensity, and spatial frequency compared with other algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Fusion Algorithm of Infrared and Visible Images Based on Joint Bilateral Filter
    Cai, Hua
    Chen, Guang-qiu
    Liu, Zhi
    Geng, Zhen-ye
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [2] Infrared and visible light image fusion algorithm based on FCM and guided filter
    Gong Jiamin
    Wu Yijie
    Liu Fang
    Lei Shutao
    Zhu Zehao
    Zhang Yunsheng
    AOPC 2021: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2021, 12065
  • [3] Attribute filter based infrared and visible image fusion
    Mo, Yan
    Kang, Xudong
    Duan, Puhong
    Sun, Bin
    Li, Shutao
    INFORMATION FUSION, 2021, 75 : 41 - 54
  • [4] Infrared and visible image fusion method based on rolling guidance filter and NSST
    Zhao, Cheng
    Huang, Yongdong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (06)
  • [5] Visible and Infrared Image Adaptive Fusion Based on Bilateral Filters
    Tang W.
    Jia F.
    Wang X.
    Binggong Xuebao/Acta Armamentarii, 2022, 43 (11): : 2836 - 2845
  • [6] Casting DR image fusion based on weighted least squares filter and guided filter
    Yang Z.
    Zeng L.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (06): : 211 - 220
  • [7] An Infrared and Visible Image Fusion Algorithm Based on MAP
    Kang Kai
    Liu Tingting
    Wang Tianyun
    Nian Fuchun
    Xu Xianchun
    17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [8] Infrared and visible image fusion based on FRC algorithm
    Dai L.-Y.
    Liu G.
    Xiao G.
    Ruan J.-J.
    Zhu J.-L.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (11): : 2690 - 2698
  • [9] Infrared and visible image fusion method of dual NSCT and PCNN
    Wu, Chunming
    Chen, Long
    PLOS ONE, 2020, 15 (09):
  • [10] Infrared and visible image fusion based on QNSCT and Guided Filter
    Yang, Chenxuan
    He, Yunan
    Sun, Ce
    Jiang, Sheng
    Li, Ye
    Zhao, Peng
    OPTIK, 2022, 253