Scalable Non-Volatile Tuning of Photonic Computational Memories by Automated Silicon Ion Implantation

被引:3
|
作者
Varri, Akhil [1 ,2 ]
Taheriniya, Shabnam [3 ,4 ]
Brueckerhoff-Plueckelmann, Frank [1 ,2 ]
Bente, Ivonne [1 ,2 ]
Farmakidis, Nikolaos [5 ]
Bernhardt, Daniel [6 ]
Roesner, Harald [3 ]
Kruth, Maximilian [7 ,8 ]
Nadzeyka, Achim [6 ]
Richter, Torsten [6 ]
Wright, Christopher David [9 ]
Bhaskaran, Harish [5 ]
Wilde, Gerhard [3 ]
Pernice, Wolfram H. P. [1 ,2 ,4 ]
机构
[1] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[2] Univ Munster, Ctr Soft Nanosci, Busso Peus Str 10, D-48149 Munster, Germany
[3] Univ Munster, Inst Mat Phys, Wilhelm Klemm St 10, D-48149 Munster, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Neuenheimer Feld 227, D-69120 Heidelberg, Germany
[5] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 2JD, England
[6] RAITH Nanofabricat, Konrad Adenauer Allee 8, D-44263 Dortmund, Germany
[7] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[8] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[9] Univ Exeter, Dept Engn, Exeter EX4 4QF, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
electron energy-loss spectroscopy; focused ion implantation; micro-ring resonators; photonic integrated circuits; wavelength division multiplexing;
D O I
10.1002/adma.202310596
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photonic integrated circuits (PICs) are revolutionizing the realm of information technology, promising unprecedented speeds and efficiency in data processing and optical communication. However, the nanoscale precision required to fabricate these circuits at scale presents significant challenges, due to the need to maintain consistency across wavelength-selective components, which necessitates individualized adjustments after fabrication. Harnessing spectral alignment by automated silicon ion implantation, in this work scalable and non-volatile photonic computational memories are demonstrated in high-quality resonant devices. Precise spectral trimming of large-scale photonic ensembles from a few picometers to several nanometres is achieved with long-term stability and marginal loss penalty. Based on this approach, spectrally aligned photonic memory and computing systems for general matrix multiplication are demonstrated, enabling wavelength multiplexed integrated architectures at large scales. This work highlights a scalable and non-volatile technique for post-fabrication tuning of photonic circuits by automated silicon ion implantation. Spectral shifts ranging from less than a few picometres to several nanometres are obtained, showing long-term stability without inducing additional loss. This approach is finally applied to photonic memory and computing systems, enabling wavelength multiplexed integrated architectures at large scales.image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] INTERFACIAL DOPING BY RECOIL IMPLANTATION FOR NON-VOLATILE MEMORIES
    ITO, T
    HIJIYA, S
    NISHI, H
    SHINODA, M
    FURUYA, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1978, 17 : 201 - 206
  • [2] Photonic non-volatile memories using phase change materials
    Pernice, Wolfram H. P.
    Bhaskaran, Harish
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (17)
  • [3] ERASABLE NON-VOLATILE MEMORIES
    JAVETSKI, J
    [J]. ELECTRONIC PRODUCTS MAGAZINE, 1982, 24 (13): : 37 - 40
  • [4] Non-Volatile Memories for Removable Media
    Micheloni, Rino
    Picca, Massimiliano
    Amato, Stefano
    Schwalm, Helmut
    Scheppler, Michael
    Commodar, Stefano
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (01) : 148 - 160
  • [5] A BIST scheme for non-volatile memories
    Olivo, P
    Dalpasso, M
    [J]. JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 1998, 12 (1-2): : 139 - 144
  • [6] Carbon nanomaterials for non-volatile memories
    Ethan C. Ahn
    H.-S. Philip Wong
    Eric Pop
    [J]. Nature Reviews Materials, 3
  • [7] A Bist Scheme for Non-Volatile Memories
    Piero Olivo
    Marcello Dalpasso
    [J]. Journal of Electronic Testing, 1998, 12 : 139 - 144
  • [8] Carbon nanomaterials for non-volatile memories
    Ahn, Ethan C.
    Wong, H. -S. Philip
    Pop, Eric
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [9] Magnetic nanostructures for non-volatile memories
    Soltys, J.
    Gazi, S.
    Fedor, J.
    Tobik, J.
    Precner, M.
    Cambel, V.
    [J]. MICROELECTRONIC ENGINEERING, 2013, 110 : 474 - 478
  • [10] Gray counters for non-volatile memories
    Kulandai, Arockia David Roy
    Rose, John
    Schwarz, Thomas
    [J]. Memories - Materials, Devices, Circuits and Systems, 2022, 2