TBK1 promotes thyroid cancer progress by activating the PI3K/Akt/mTOR signaling pathway

被引:10
|
作者
Jiang, Qiuli [1 ]
Guan, Yingying [1 ]
Zheng, Jingmei [1 ]
Lu, Huadong [1 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Pathol, Xiamen Branch, Xiamen 361015, Fujian, Peoples R China
关键词
MAZ; migration; proliferation; TBK1; thyroid cancer; EPITHELIAL-MESENCHYMAL TRANSITION; CELL-PROLIFERATION; BREAST-CANCER; CARCINOMA; EXPRESSION; MIGRATION; PROTEIN; GROWTH;
D O I
10.1002/iid3.796
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionThyroid cancer has received increasing attention; however, its detailed pathogenesis and pathological processes remain unclear. We investigated the role of TANK-binding kinase 1 (TBK1) in the progression of thyroid cancer. MethodsThe expression of TBK1 in thyroid cancer and normal control tissues was analyzed using real-time quantitative polymerase chain reaction. The function of TBK1 on thyroid cancer cells was detected using MTT, colony formation, wound healing, and Transwell assays. The xenograft assay was carried out to check on the role of TBK1 in thyroid cancer. ResultsTBK1 was highly expressed in thyroid tumors. High expression of TBK1 raised viability, proliferation, migration, and invasion of thyroid cancer cells. Gene set enrichment analysis revealed that TBK1 activated the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. In addition, Myc-associated zinc finger protein (MAZ) was overexpressed in thyroid cancer and transcriptionally activated BK1. MAZ silence reversed the effects of TBK1 overexpression on thyroid cancer progression. Cotransfection with MAZ small-interfering RNA(siRNA) and TBK1 siRNA did not strengthen the inhibitory effect of TBK1 silencing on the thyroid cancer cells. The xenograft tumor assay showed that TBK1 short hairpinRNA inhibited tumor growth. ConclusionMAZ silencing inhibited tumor progress of thyroid cancer cells, whereas this inhibitory effect was reversed by TBK1 overexpression.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] NUCKS1 promotes the progression of colorectal cancer via activating PI3K/AKT/mTOR signaling pathway
    Zhu, Liao-Liao
    Shi, Jing-Jie
    Guo, Yong-Dong
    Yang, Cheng
    Wang, Rong-Lin
    Li, Shan-Shan
    Gan, Dong-Xue
    Ma, Pei-Xiang
    Li, Jun-Qiang
    Su, Hai-Chuan
    NEOPLASMA, 2023, 70 (02) : 272 - 286
  • [2] Morroniside promotes the osteogenesis by activating PI3K/Akt/mTOR signaling
    Liu, Hui
    Li, Xi
    Lin, Jingui
    Lin, Miaokuo
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2021, 85 (02) : 332 - 339
  • [3] RPN1 promotes the proliferation and invasion of breast cancer cells by activating the PI3K/AKT/mTOR signaling pathway
    Wei-juan Shen
    Yi Zhang
    Discover Oncology, 15
  • [4] RPN1 promotes the proliferation and invasion of breast cancer cells by activating the PI3K/AKT/mTOR signaling pathway
    Shen, Wei-juan
    Zhang, Yi
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [5] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [6] The PI3K/AKT/MTOR signaling pathway: The role of PI3K and AKT inhibitors in breast cancer
    Huemer F.
    Bartsch R.
    Gnant M.
    Current Breast Cancer Reports, 2014, 6 (2) : 59 - 70
  • [7] HPIP promotes thyroid cancer cell growth, migration and EMT through activating PI3K/AKT signaling pathway
    Wang, Shun-chang
    Chai, Da-sen
    Chen, Chuan-bo
    Wang, Zheng-ye
    Wang, Lei
    BIOMEDICINE & PHARMACOTHERAPY, 2015, 75 : 33 - 39
  • [8] Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer
    Li, Huayi
    Prever, Lorenzo
    Hirsch, Emilio
    Gulluni, Federico
    CANCERS, 2021, 13 (14)
  • [9] RAS Signaling in the PI3K/AKT/MTOR Pathway
    Nussinov, Ruth
    Zhang, Mingzhen
    Jang, Hyunbum
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 51A - 51A
  • [10] PI3K/Akt/mTOR signaling pathway in cancer stem cells
    Fath, Mohsen Karami
    Ebrahimi, Menooa
    Nourbakhsh, Ehsan
    Hazara, Ahmad Zia
    Mirzaei, Ali
    Shafieyari, Saba
    Salehi, Azadeh
    Hoseinzadeh, Mahsa
    Payandeh, Zahra
    Barati, Ghasem
    PATHOLOGY RESEARCH AND PRACTICE, 2022, 237