Belowground bacterial communities and carbon components contribute to soil respiration in a subtropical forest

被引:6
|
作者
Han, Shun [1 ,2 ]
Wang, Achen [2 ]
机构
[1] Univ Oklahoma, Sch Biol Sci, Norman, OK USA
[2] Huazhong Agr Univ, State Key Lab Agr Microbiol, Wuhan 430070, Peoples R China
关键词
Forest ecosystems; Soil respiration; Bacterial diversity; Carbon components; Rare bacterial taxa; DISSOLVED ORGANIC-CARBON; MICROBIAL BIOMASS; TEMPERATURE SENSITIVITY; LAND USES; NITROGEN; RESPONSES; MATTER; MINERALIZATION; FRACTIONS; CO2;
D O I
10.1007/s11104-023-06257-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Purpose Forest ecosystems are crucial for maintaining high levels of bacterial diversity and containing high amounts of carbon (C), both of which play essential roles in regulating C cycling in the soil and atmosphere through the processes of soil respiration and plant photosynthesis. However, how bacterial communities and different soil carbon components (e.g., soil organic carbon (SOC), readily oxidizable organic carbon (ROC), dissolved organic carbon (DOC), and microbial biomass carbon (MBC)) impact the soil respiration remains largely unknown. Therefore, we hypothesize that belowground bacterial communities and soil carbon contribute to soil respiration, which further influences soil carbon storage.Methods We collected 24 soil samples from Mount Lu (subtropical forest ecosystem, China) along an elevation gradient consisting in eight levels. Here, we used high-throughput sequencing to detect bacterial alpha and beta diversity. We also measured several soil carbon variables, including SOC, ROC, DOC, and MBC. Particularly, regression analysis, structural equation modeling and random forest analysis were applied to explore the effects of bacterial diversity and soil carbon on soil respiration using R-3.6.2.Results The results showed that soil respiration has a clearly positive linear regression (R2 = 0.35-0.61, p < 0.01) with all measured soil carbon components, including SOC, ROC, DOC, and MBC. Bacterial communities composition was significantly divergent along the elevation levels, primarily due to species replacement. Random forest and structural equation modeling analysis confirmed that soil carbon and bacterial beta diversity were the significant driving forces behind soil respiration. Additionally, bacterial communities composition significantly impacted changes in soil respiration, with five identified rare bacterial phyla (WPS-2, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Cyanobacteria) significantly correlated with soil respiration. Meanwhile, random forest regression analysis showed that rare bacterial taxa, rather than abundant ones, were the primary bacterial predictors of soil respiration.Conclusion Taken together, belowground bacterial communities and soil carbon variables jointly contribute to soil respiration in a subtropical forest, and further regulate soil C storage as well as even influence climate change.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [1] Nitrogen Addition Altered the Effect of Belowground C Allocation on Soil Respiration in a Subtropical Forest
    He, Tongxin
    Wang, Qingkui
    Wang, Silong
    Zhang, Fangyue
    PLOS ONE, 2016, 11 (05):
  • [2] Soil respiration in a subtropical forest of southwestern China: Components, patterns and controls
    Yang, Kaijun
    Yang, Yulian
    Xu, Zhenfeng
    Wu, Qinggui
    PLOS ONE, 2018, 13 (09):
  • [3] Topography and plant community structure contribute to spatial heterogeneity of soil respiration in a subtropical forest
    Jiang, Yun
    Zhang, Bingwei
    Wang, Weitao
    Li, Buhang
    Wu, Zongrui
    Chu, Chengjin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 733
  • [4] Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest
    Li, Yiyong
    Zhou, Guoyi
    Huang, Wenjuan
    Liu, Juxiu
    Fang, Xiong
    PLANT AND SOIL, 2016, 409 (1-2) : 247 - 257
  • [5] Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest
    Yiyong Li
    Guoyi Zhou
    Wenjuan Huang
    Juxiu Liu
    Xiong Fang
    Plant and Soil, 2016, 409 : 247 - 257
  • [6] Soil respiration in an old-growth subtropical forest: Patterns, components, and controls
    Tan, Zheng-Hong
    Zhang, Yi-Ping
    Liang, Naishen
    Song, Qing-Hai
    Liu, Yu-Hong
    You, Guang-Yong
    Li, Lin-Hui
    Yu, Lei
    Wu, Chuan-Shen
    Lu, Zhi-Yun
    Wen, Han-Dong
    Zhao, Jun-Fu
    Gao, Fu
    Yang, Lian-Yan
    Song, Liang
    Zhang, Yong-Jiang
    Munemasa, Teramoto
    Sha, Li-Qing
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (07) : 2981 - 2990
  • [7] Soil respiration and carbon balance in a subtropical native forest and two managed plantations
    Yang, Yu-Sheng
    Chen, Guang-Shui
    Guo, Jian-Fen
    Xie, Jin-Sheng
    Wang, Xiao-Guo
    PLANT ECOLOGY, 2007, 193 (01) : 71 - 84
  • [8] Soil respiration and carbon balance in a subtropical native forest and two managed plantations
    Yu-Sheng Yang
    Guang-Shui Chen
    Jian-Fen Guo
    Jin-Sheng Xie
    Xiao-Guo Wang
    Plant Ecology, 2007, 193 : 71 - 84
  • [9] Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest
    Wang, Jianqing
    Shi, Xiuzhen
    Zheng, Chengyang
    Suter, Helen
    Huang, Zhiqun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 755
  • [10] Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest
    Yarwood, Stephanie A.
    Myrold, David D.
    Hogberg, Mona N.
    FEMS MICROBIOLOGY ECOLOGY, 2009, 70 (01) : 151 - 162