Discriminative and Robust Attribute Alignment for Zero-Shot Learning

被引:11
|
作者
Cheng, De [1 ]
Wang, Gerong [2 ]
Wang, Nannan [1 ]
Zhang, Dingwen [3 ,4 ]
Zhang, Qiang [5 ]
Gao, Xinbo [6 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian 710071, Shaanxi, Peoples R China
[2] Beijing Inst Remote Sensing Equipment, Beijing 100854, Peoples R China
[3] Inst Artificial Intelligence, Hefei Comprehens Natl Sci Ctr, Hefei 230088, Peoples R China
[4] Northwestern Polytech Univ, Sch Automat, Xian 710060, Shaanxi, Peoples R China
[5] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Shaanxi, Peoples R China
[6] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; attribute alignment; contrastive learning; consistency regularization;
D O I
10.1109/TCSVT.2023.3243205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot learning (ZSL) aims to learn models that can recognize images of semantically related unseen categories, through transferring attribute-based knowledge learned from training data of seen classes to unseen testing data. As visual attributes play a vital role in ZSL, recent embedding-based methods usually focus on learning a compatibility function between the visual representation and the class semantic attributes. While in this work, in addition to simply learning the region embedding of different semantic attributes to maintain the generalization capability of the learned model, we further consider to improve the discrimination power of the learned visual features themselves by contrastive embedding. It exploits both the class-wise and instance-wise supervision for GZSL, under the attribute guided weakly supervised representation learning framework. To further improve the robustness of the ZSL model, we also propose to train the model under the consistency regularization constraint, through taking full advantages of self-supervised signals of the image under various perturbed augmentation situations, which could make the model robust to some occluded or un-related attribute regions. Extensive experimental results demonstrate the effectiveness of the proposed ZSL method, achieving superior performances to state-of-the-art methods on three widely-used benchmark datasets, namely CUB, SUN, and AWA2. Our source code is released at https://github.com/KORIYN/CC-ZSL.
引用
收藏
页码:4244 / 4256
页数:13
相关论文
共 50 条
  • [1] Discriminative Latent Attribute Autoencoder for Zero-Shot Learning
    Chen, Runqing
    Wu, Songsong
    Sun, Guangcheng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 873 - 877
  • [2] Learning Discriminative Instance Attribute for Zero-Shot Classification
    Wang, Lu
    Wu, Songsong
    Yu, Jun
    Jing, Xiao-Yuan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 210 - 213
  • [3] A Robust Generalized Zero-Shot Learning Method with Attribute Prototype and Discriminative Attention Mechanism
    Liu, Xiaodong
    Luo, Weixing
    Du, Jiale
    Wang, Xinshuo
    Dang, Yuhao
    Liu, Yang
    ELECTRONICS, 2024, 13 (18)
  • [4] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [5] Zero-Shot Learning with Attribute Selection
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Tang, Sheng
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6870 - 6877
  • [6] Zero-shot Learning With Fuzzy Attribute
    Liu, Chongwen
    Shang, Zhaowei
    Tang, Yuan Yan
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 277 - 282
  • [7] Rethinking attribute localization for zero-shot learning
    Chen, Shuhuang
    Chen, Shiming
    Xie, Guo-Sen
    Shu, Xiangbo
    You, Xinge
    Li, Xuelong
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (07)
  • [8] Rethinking attribute localization for zero-shot learning
    Shuhuang CHEN
    Shiming CHEN
    GuoSen XIE
    Xiangbo SHU
    Xinge YOU
    Xuelong LI
    Science China(Information Sciences), 2024, (07) : 184 - 196
  • [9] An Attribute Learning Method for Zero-Shot Recognition
    Yazdanian, Ramtin
    Shojaee, Seyed Mohsen
    Baghshah, Mahdieh Soleymani
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 2235 - 2240
  • [10] Attribute relation learning for zero-shot classification
    Liu, Mingxia
    Zhang, Daoqiang
    Chen, Songcan
    NEUROCOMPUTING, 2014, 139 : 34 - 46