Self-consistent gyrokinetic modeling of turbulent and neoclassical tungsten transport in toroidally rotating plasmas

被引:2
|
作者
Lim, K. [1 ]
Garbet, X. [2 ,3 ]
Sarazin, Y. [2 ]
Gravier, E. [4 ]
Lesur, M. [4 ]
Lo-Cascio, G. [4 ]
Rouyer, T. [4 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[2] IRFM, CEA, F-13108 St Paul Les Durance, France
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[4] Univ Lorraine, Inst Jean Lamour IJL, UMR 7198 CNRS, F-54000 Nancy, France
关键词
POLOIDAL ASYMMETRIES; IMPURITY TRANSPORT; ACCUMULATION; DENSITY; IMPACT;
D O I
10.1063/5.0157428
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of toroidal rotation on both turbulent and neoclassical transport of tungsten (W) in tokamaks is investigated using the flux-driven, global, nonlinear 5D gyrokinetic code GYSELA. Nonlinear simulations are carried out with different levels of momentum injection that drive W into the supersonic regime, while the toroidal velocity of the main ions remains in the subsonic regime. The numerical simulations demonstrate that toroidal rotation induces centrifugal forces that cause W to accumulate in the outboard region, generating an in-out poloidal asymmetry. This asymmetry enhances neoclassical inward convection, which can lead to central accumulation of W in cases of strong plasma rotation. The core accumulation of W is mainly driven by inward neoclassical convection. However, as momentum injection continues, roto-diffusion, proportional to the radial gradient of the toroidal velocity, becomes significant and generates outward turbulent flux in the case of ion temperature gradient turbulence. Overall, the numerical results from nonlinear GYSELA simulations are in qualitative agreement with the theoretical predictions for impurity transport.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
    Esteve, D.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Breton, S.
    Donnel, P.
    Asahi, Y.
    Bourdelle, C.
    Dif-Pradalier, G.
    Ehrlacher, C.
    Emeriau, C.
    Ghendrih, Ph.
    Gillot, C.
    Latu, G.
    Passeron, C.
    [J]. NUCLEAR FUSION, 2018, 58 (03)
  • [2] Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas
    Sugama H.
    [J]. Reviews of Modern Plasma Physics, 1 (1)
  • [3] Neoclassical electron and ion transport in toroidally rotating plasmas
    Sugama, H
    Horton, W
    [J]. PHYSICS OF PLASMAS, 1997, 4 (06) : 2215 - 2228
  • [4] SELF-CONSISTENT DYNAMOLIKE ACTIVITY IN TURBULENT PLASMAS
    BHATTACHARJEE, A
    HAMEIRI, E
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (02) : 206 - 209
  • [5] SELF-CONSISTENT TREATMENT OF TRANSPORT IN TOKAMAK PLASMAS
    WILHELMSSON, H
    LEROUX, MN
    [J]. PHYSICA SCRIPTA, 1993, 48 (06): : 735 - 757
  • [6] Self-consistent chaotic transport in fluids and plasmas
    del-Castillo-Negrete, D
    [J]. CHAOS, 2000, 10 (01) : 75 - 88
  • [7] Self-consistent modeling of turbulence and transport
    Shestakov, AI
    Cohen, RH
    Crotinger, JA
    LoDestro, LL
    Tarditi, A
    Xu, XQ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (02) : 399 - 426
  • [8] ION-TRANSPORT IN TOROIDALLY ROTATING TOKAMAK PLASMAS
    CATTO, PJ
    BERNSTEIN, IB
    TESSAROTTO, M
    [J]. PHYSICS OF FLUIDS, 1987, 30 (09) : 2784 - 2795
  • [9] Self-consistent modeling of nonlocal inductively coupled plasmas
    Polomarov, Oleg V.
    Theodosiou, Constantine E.
    Kaganovich, Igor D.
    Economou, Demetre J.
    Ramamurthi, Badri N.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (03) : 767 - 785
  • [10] Modeling of turbulent particle and heat transport in helical plasmas based on gyrokinetic analysis
    Toda, S.
    Nakata, M.
    Nunami, M.
    Ishizawa, A.
    Watanabe, T. -H.
    Sugama, H.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (01)