GRADIENT ESTIMATES FOR ENTROPY SOLUTIONS TO ELLIPTIC EQUATIONS WITH DEGENERATE COERCIVITY

被引:0
|
作者
Zhang, Jiaxiang [1 ]
Hongya, Hongya [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding, Peoples R China
关键词
gradient estimate; entropy solution; degenerate elliptic equation; UNIQUENESS; EXISTENCE;
D O I
10.1216/rmj.2023.53.275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive some a priori estimates and then prove the existence and regularity of distributional solutions to degenerate elliptic equations of the form ( -div d(x, u(x), backward difference u(x)) = f (x), x is an element of center dot, u(x) =0, x is an element of partial differential center dot, where the Caratheodory function d : center dot x IIB x IIBn -> IIBn satisfies |xi|p d(x,s, xi)center dot xi >= alpha (1 + |s|)theta , |d(x,s, xi)| <=beta|xi|p-1 for 1 < p < n, 0 <= theta < p -1 and 0 < alpha <= beta < infinity, with f a Marcinkiewicz function. We obtain a gradient estimate for entropy solutions, and show that the result is optimal by a counterexample. We also consider degenerate elliptic equations with a lower order term, ( -div d(x, u(x), backward difference u(x))+ |u|r-1u = f (x), x is an element of center dot, u(x) = 0, x is an element of partial differential center dot. We show that the presence of the lower order term has regularizing effects on our result.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
  • [1] Geometric gradient estimates for solutions to degenerate elliptic equations
    Araujo, Damiao J.
    Ricarte, Gleydson
    Teixeira, Eduardo V.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 605 - 625
  • [2] Geometric gradient estimates for solutions to degenerate elliptic equations
    Damião J. Araújo
    Gleydson Ricarte
    Eduardo V. Teixeira
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 53 : 605 - 625
  • [3] Elliptic Equations with Degenerate Coercivity: Gradient Regularity
    Daniela Giachetti
    Maria Michaela Porzio
    [J]. Acta Mathematica Sinica, 2003, 19 : 349 - 370
  • [4] Elliptic equations with degenerate coercivity: Gradient regularity
    Giachetti, D
    Porzio, MM
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (02) : 349 - 370
  • [5] Entropy solutions for nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity
    Ayadi, Hocine
    Mokhtari, Fares
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 717 - 739
  • [6] Regularity for solutions of nonlinear elliptic equations with degenerate coercivity
    Benkirane A.
    Youssfi A.
    [J]. Ricerche di Matematica, 2007, 56 (2) : 241 - 275
  • [7] Local Gradient Estimates for Degenerate Elliptic Equations
    Luan Hoang
    Truyen Nguyen
    Tuoc Phan
    [J]. ADVANCED NONLINEAR STUDIES, 2016, 16 (03) : 479 - 489
  • [8] Regularity for entropy solutions to degenerate elliptic equations
    Gao, Hongya
    Huang, Miaomiao
    Ren, Wei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [9] GRADIENT ESTIMATES AND GRADIENT BLOW UP OF VISCOSITY SOLUTIONS TO DEGENERATE ELLIPTIC EQUATIONS ON "INTERIOR BOUNDARIES"
    Chobanov, Georgi
    Kutev, Nikolay
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (04): : 477 - 484
  • [10] Solutions for nonlinear elliptic equations with variable growth and degenerate coercivity
    Zhang, Xia
    Fu, Yongqiang
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) : 133 - 161