Seismic random noise suppression using improved CycleGAN

被引:0
|
作者
Sun, Shimin [1 ]
Li, Guihua [1 ]
Ding, Renwei [1 ]
Zhao, Lihong [1 ,2 ]
Zhang, Yujie [1 ]
Zhao, Shuo [1 ]
Zhang, Jinwei [1 ]
Ye, Junlin [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Earth Sci & Engn, Qingdao, Shandong, Peoples R China
[2] Lab Marine Mineral Resources, Pilot Natl Lab Marine Sci & Technol, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
seismic data; random noise; CycleGAN; noise suppression; deep learning; VARIATIONAL MODE DECOMPOSITION; ATTENUATION; NETWORK;
D O I
10.3389/feart.2023.1102656
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Random noise adversely affects the signal-to-noise ratio of complex seismic signals in complex surface conditions and media. The primary challenges related to processing seismic data have always been reducing the random noise and increasing the signal-to-noise ratio. In this study, we propose an improved cycle-consistent generative adversarial network (CycleGAN) seismic random noise suppression method. First, the generator replaces the original cycle-consistent generative adversarial network generator network structure with the Unet structure combined with the Resnet structure in order to increase the diversity of seismic data feature extraction and decrease the loss of seismic data details. Second, in order to improve the network's stability, the feature extraction effect, the event texture preservation effect, and the signal-to-noise ratio, the Least Square GAN (LSGAN) square difference loss is used in place of the conventional generative adversarial network cross-entropy loss. The feasibility of the proposed method was confirmed using model and real seismic data, both of which demonstrated that the improved cycle-consistent generative adversarial network method effectively suppressed random noise in seismic data. In addition, the denoising effect was superior to both the widely used FX deconvolution denoising method and original cycle-consistent generative adversarial network denoising method.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Random noise suppression method of seismic data based on CycleGAN
    Wu X.
    Zhang H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (05): : 958 - 968
  • [2] Application of an improved particle filter for random seismic noise suppression
    Zhang, Jingquan
    Wang, Dian
    Li, Peng
    Liu, Shiyu
    Yu, Han
    Xu, Yuxin
    Teng, Ming
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2021, 18 (06) : 943 - 953
  • [3] SEISMIC RANDOM NOISE SUPPRESSION USING DENOISING AUTOENCODER
    Song, Hui
    Fang, Menghua
    Zhou, Cheng
    Gao, Houqiang
    JOURNAL OF SEISMIC EXPLORATION, 2022, 31 (03): : 203 - 218
  • [4] Seismic random noise suppression by using MSRD-GAN
    Li, Yanchun
    Wang, Suling
    Jiang, Minzheng
    Dong, Kangxing
    Cheng, Tiancai
    Zhang, Ziming
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 222
  • [5] Random noise suppression of seismic signal using orthogonal multiwavelets
    Wu, Aidi
    Cao, Siyuan
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2002, 37 (05):
  • [6] Seismic random noise suppression using an adaptive nonlocal means algorithm
    Shuai Shang
    Li-Guo Han
    Qing-Tian Lv
    Chen-Qing Tan
    Applied Geophysics, 2013, 10 : 33 - 40
  • [7] Seismic random noise suppression using an adaptive nonlocal means algorithm
    Shang Shuai
    Han Li-Guo
    Lv Qing-Tian
    Tan Chen-Qing
    APPLIED GEOPHYSICS, 2013, 10 (01) : 33 - 40
  • [8] A local orthogonalization for seismic random noise suppression
    Xu Y.
    Cao S.
    Pan X.
    Yang G.
    Zhang X.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (02): : 280 - 287
  • [9] Seismic random noise suppression by using deep residual U-Net
    Zhong, Tie
    Cheng, Ming
    Dong, Xintong
    Li, Yue
    Wu, Ning
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [10] Seismic random noise suppression using deep convolutional autoencoder neural network
    Song, Hui
    Gao, Yang
    Chen, Wei
    Xue, Ya-juan
    Zhang, Hua
    Zhang, Xiang
    JOURNAL OF APPLIED GEOPHYSICS, 2020, 178