Multi-omic analyses and network biology in cardiovascular disease

被引:2
|
作者
Reitz, Cristine J. [1 ,2 ,3 ,4 ]
Kuzmanov, Uros [1 ,2 ]
Gramolini, Anthony O. [1 ,2 ,3 ,4 ]
机构
[1] Univ Toronto, Fac Med, Dept Physiol, Toronto, ON, Canada
[2] Ted Rogers Ctr Heart Res, Translat Biol & Engn Program, Toronto, ON, Canada
[3] Univ Toronto, Temerty Fac Med, Ted Rogers Ctr Heart Res, Dept Physiol, 661 Univ Ave,14th Floor, Toronto, ON M5G 1M1, Canada
[4] Univ Toronto, Temerty Fac Med, Ted Rogers Ctr Heart Res, Translat Biol & Engn Program, 661 Univ Ave,14th Floor, Toronto, ON M5G 1M1, Canada
基金
加拿大健康研究院;
关键词
cardiovascular; heart failure; integration; multi-omics; systems biology; PROTEIN-PROTEIN INTERACTIONS; HUMAN HEART; QUANTITATIVE PROTEOMICS; MYOCARDIAL-INFARCTION; SPATIAL PROTEOMICS; REVEALS; FAILURE; ACETYLATION; LANDSCAPE; MEDICINE;
D O I
10.1002/pmic.202200289
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Heart disease remains a leading cause of death in North America and worldwide. Despite advances in therapies, the chronic nature of cardiovascular diseases ultimately results in frequent hospitalizations and steady rates of mortality. Systems biology approaches have provided a new frontier toward unraveling the underlying mechanisms of cell, tissue, and organ dysfunction in disease. Mapping the complex networks of molecular functions across the genome, transcriptome, proteome, and metabolome has enormous potential to advance our understanding of cardiovascular disease, discover new disease biomarkers, and develop novel therapies. Computational workflows to interpret these data-intensive analyses as well as integration between different levels of interrogation remain important challenges in the advancement and application of systems biology-based analyses in cardiovascular research. This review will focus on summarizing the recent developments in network biology-level profiling in the heart, with particular emphasis on modeling of human heart failure. We will provide new perspectives on integration between different levels of large "omics" datasets, including integration of gene regulatory networks, protein-protein interactions, signaling networks, and metabolic networks in the heart.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-omic network signatures of disease
    Gibbs, David L.
    Gralinski, Lisa
    Baric, Ralph S.
    McWeeney, Shannon K.
    [J]. FRONTIERS IN GENETICS, 2014, 4
  • [2] Multi-omic links between gut microbiome and cardiovascular disease
    Hindson, Jordan
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2024, 21 (06) : 376 - 376
  • [3] Characterizing Multi-omic Data in Systems Biology
    Mason, Christopher E.
    Porter, Sandra G.
    Smith, Todd M.
    [J]. SYSTEMS ANALYSIS OF HUMAN MULTIGENE DISORDERS, 2014, 799 : 15 - 38
  • [4] Multi-omic molecular profiling and network biology for precision anaesthesiology: a narrative review
    Scarpa, Joseph R.
    Elemento, Olivier
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2023, 131 (01) : 26 - 36
  • [5] The MPLEx Protocol for Multi-omic Analyses of Soil Samples
    Nicora, Carrie D.
    Burnum-Johnson, Kristin E.
    Nakayasu, Ernesto S.
    Casey, Cameron P.
    White, Richard A., II
    Chowdhury, Taniya Roy
    Kyle, Jennifer E.
    Kim, Young-Mo
    Smith, Richard D.
    Metz, Thomas O.
    Jansson, Janet K.
    Baker, Erin S.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (135):
  • [6] An AI Agent for Fully Automated Multi-Omic Analyses
    Zhou, Juexiao
    Zhang, Bin
    Li, Guowei
    Chen, Xiuying
    Li, Haoyang
    Xu, Xiaopeng
    Chen, Siyuan
    He, Wenjia
    Xu, Chencheng
    Liu, Liwei
    Gao, Xin
    [J]. Advanced Science, 2024, 11 (44)
  • [7] eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses
    Dalang Yu
    Lili Dong
    Fangqi Yan
    Hailong Mu
    Bixia Tang
    Xiao Yang
    Tao Zeng
    Qing Zhou
    Feng Gao
    Zhonghuang Wang
    Ziqian Hao
    Hongen Kang
    Yi Zheng
    Hongwei Huang
    Yuzhang Wei
    Wei Pan
    Yaochen Xu
    Junwei Zhu
    Shilei Zhao
    Ciran Wang
    Pengyu Wang
    Long Dai
    Mushan Li
    Li Lan
    Yiwei Wang
    Hua Chen
    Yi-Xue Li
    Yun-Xin Fu
    Zhen Shao
    Yiming Bao
    Fangqing Zhao
    Luo-Nan Chen
    Guo-Qing Zhang
    Wenming Zhao
    Haipeng Li
    [J]. National Science Review, 2019, 6 (05) : 867 - 869
  • [8] eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses
    Yu, Dalang
    Dong, Lili
    Yan, Fangqi
    Mu, Hailong
    Tang, Bixia
    Yang, Xiao
    Zeng, Tao
    Zhou, Qing
    Gao, Feng
    Wang, Zhonghuang
    Hao, Ziqian
    Kang, Hongen
    Zheng, Yi
    Huang, Hongwei
    Wei, Yuzhang
    Pan, Wei
    Xu, Yaochen
    Zhu, Junwei
    Zhao, Shilei
    Wang, Ciran
    Wang, Pengyu
    Dai, Long
    Li, Mushan
    Lan, Li
    Wang, Yiwei
    Chen, Hua
    Li, Yi-Xue
    Fu, Yun-Xin
    Shao, Zhen
    Bao, Yiming
    Zhao, Fangqing
    Chen, Luo-Nan
    Zhang, Guo-Qing
    Zhao, Wenming
    Li, Haipeng
    [J]. NATIONAL SCIENCE REVIEW, 2019, 6 (05) : 867 - 869
  • [9] MoNET: an R package for multi-omic network analysis
    Li, Jin
    Chen, Feng
    Liang, Hong
    Yan, Jingwen
    [J]. BIOINFORMATICS, 2022, 38 (04) : 1165 - 1167
  • [10] Multi-omic and multi-species meta-analyses of nicotine consumption
    Rohan H. C. Palmer
    Chelsie E. Benca-Bachman
    Spencer B. Huggett
    Jason A. Bubier
    John E. McGeary
    Nikhil Ramgiri
    Jenani Srijeyanthan
    Jingjing Yang
    Peter M. Visscher
    Jian Yang
    Valerie S. Knopik
    Elissa J. Chesler
    [J]. Translational Psychiatry, 11