Magnetic manipulation in Dy/Tb multilayer upon electron-irradiation

被引:0
|
作者
Paul, Amitesh [1 ,2 ,3 ]
Esquinazi, Pablo D. [4 ]
Ivan Zandalazini, Carlos [5 ]
Setzer, Annette [4 ]
Knolle, Wolfgang [6 ]
机构
[1] Guangdong Technion Israel Inst Technol, Dept Mat Sci & Engn, 241 Daxue Lu, Shantou 515063, Guangdong, Peoples R China
[2] Guangdong Technion Israel Inst Technol, Guangdong Prov Key Lab Mat & Technol Energy Conve, 241 Daxue Lu, Shantou 515063, Guangdong, Peoples R China
[3] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
[4] Univ Leipzig, Div Quantum Magnetism & Superconduct, D-04103 Leipzig, Germany
[5] Univ Nacl Cordoba, CONICET, IFEG, X5000HUA, Cordoba, Argentina
[6] IOM Leibniz Inst Oberflachenmodifizierung, Leipzig, Germany
关键词
75.70.Cn: Magnetic properties of interfaces; 75.70.-i: Magnetic multilayers; 75.30.Gw: magnetic anisotropy; 75.40.Gb: Superspin glass; 75.60.Jk: Magnetization reversal mechanisms; 75.10.Nr: Magnetic nanoparticles; GLASS; STABILITY; HELICES; TEM;
D O I
10.1016/j.jmmm.2022.170258
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulation and control of defects triggered by an electron beam allow us to conduct defect engineering on layered materials. We investigate topologically stable helices within a [Dy(10 nm)/Tb(10 nm)](30) multilayer subjected to MeV electron(e)-irradiation up to a maximum fluence of 9.58 x 10(18) e/cm(2). As electrons can go through the sample homogeneously and with high penetration depth, they produce defects without doping. Our e-irradiation results indicate defect induced magnetic manipulation, which increases the blocking/freezing temperature of spin-frustrated interfaces by 4%. This increase implies an increase in the spin-cluster volume. Consequently, the reduced uncompensated pinning centres decrease the interfacial exchange bias coupling by 45%. Direct manipulation of pinning centres would thereby allow us to tailor spintronic devices in a clean way.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] FACTORS INDUCING DEGRADATION OF INBO3-TB BY ELECTRON-IRRADIATION
    YAMAMOTO, H
    MATSUKIYO, H
    UEHARA, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C491 - C491
  • [2] ELECTRON-IRRADIATION DEFECTS IN INP
    SIBILLE, A
    RAO, EVK
    JOURNAL OF CRYSTAL GROWTH, 1983, 64 (01) : 194 - 199
  • [3] ELECTRON-IRRADIATION DAMAGE IN QUARTZ
    DAS, G
    MITCHELL, TE
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1974, 23 (01): : 49 - 52
  • [4] ELECTRON-IRRADIATION EFFECTS IN MAGNESIUM
    ONEAL, TN
    CHAPLIN, RL
    PHYSICAL REVIEW B, 1972, 5 (10): : 3810 - &
  • [5] ELECTRON-IRRADIATION DAMAGE IN MAGNESIUM
    HOSSAIN, MK
    BROWN, LM
    ACTA METALLURGICA, 1977, 25 (03): : 257 - 264
  • [6] ELECTRON-IRRADIATION OF MONKEY SKIN
    LIPPINCOTT, SW
    MONTOUR, JL
    WILSON, JD
    ACTA RADIOLOGICA-THERAPY PHYSICS BIOLOGY, 1973, 12 (04): : 347 - 352
  • [7] ELECTRON-IRRADIATION OF GAASP LEDS
    DIMIDUK, KC
    NESS, CQ
    FOLEY, JK
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1985, 32 (06) : 4010 - 4015
  • [8] ELECTRON-IRRADIATION DAMAGE IN ZIRCONIUM
    CARPENTER, GJC
    JOURNAL OF METALS, 1979, 31 (08): : F32 - F32
  • [10] ELECTRON-IRRADIATION IN AMORPHOUS SILICON
    DESHMUKH, RS
    GUHA, S
    NARASIMHAN, KL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (22): : L625 - L627