Deep Reinforcement Learning for Optimization at Early Design Stages

被引:2
|
作者
Servadei, Lorenzo [1 ,5 ]
Lee, Jin Hwa [2 ]
Arjona Medina, Jose A. [3 ]
Werner, Michael [1 ,2 ]
Hochreiter, Sepp [3 ]
Ecker, Wolfgang [1 ,2 ]
Wille, Robert [3 ,4 ]
机构
[1] Infineon Technol AG, D-85579 Neubiberg, Germany
[2] Tech Univ Munich, D-80333 Munich, Germany
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Software Competence Ctr Hagenberg, A-4232 Hagenberg, Austria
[5] Infineon Technol AG, Adv Artificial Intelligence Unit, D-85579 Munich, Germany
关键词
Optimization; Costs; Design methodology; User interfaces; Hardware; Reinforcement learning; Table lookup; Machine Learning; Design Automation; Reinforcement Learning; Combinatorial Optimization; Early Design Stages;
D O I
10.1109/MDAT.2022.3145344
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep reinforcement learning is shown to improve the design cost of hardware char63software interfaces within an industrial design framework. Based on optimization preferences specified by a designer, the proposed approach generates optimized solutions.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [1] Cost Optimization at Early Stages of Design Using Deep Reinforcement Learning
    Servadei, Lorenzo
    Zheng, Jiapeng
    Arjona-Medina, Jose
    Werner, Michael
    Esen, Volkan
    Hochreiter, Sepp
    Ecker, Wolfgang
    Wille, Robert
    [J]. PROCEEDINGS OF THE 2020 ACM/IEEE 2ND WORKSHOP ON MACHINE LEARNING FOR CAD (MLCAD '20), 2020, : 37 - 42
  • [2] Sequential Banner Design Optimization with Deep Reinforcement Learning
    Kondo, Yusuke
    Wang, Xueting
    Seshime, Hiroyuki
    Yamasaki, Toshihiko
    [J]. 23RD IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2021), 2021, : 253 - 256
  • [3] Framework for design optimization using deep reinforcement learning
    Kazuo Yonekura
    Hitoshi Hattori
    [J]. Structural and Multidisciplinary Optimization, 2019, 60 : 1709 - 1713
  • [4] Framework for design optimization using deep reinforcement learning
    Yonekura, Kazuo
    Hattori, Hitoshi
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1709 - 1713
  • [5] DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design
    Tan, Youhai
    Dai, Lingxue
    Huang, Weifeng
    Guo, Yinfeng
    Zheng, Shuangjia
    Lei, Jinping
    Chen, Hongming
    Yang, Yuedong
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (23) : 5907 - 5917
  • [6] Design optimization of heat exchanger using deep reinforcement learning
    Lee, Geunhyeong
    Joo, Younghwan
    Lee, Sung-Uk
    Kim, Taejoon
    Yu, Yonggyun
    Kim, Hyun-Gil
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [7] Learning Global Optimization by Deep Reinforcement Learning
    da Silva Filho, Moesio Wenceslau
    Barbosa, Gabriel A.
    Miranda, Pericles B. C.
    [J]. INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 417 - 433
  • [8] Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design
    Stahl, Niclas
    Falkman, Goran
    Karlsson, Alexander
    Mathiason, Gunnar
    Bostrom, Jonas
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (07) : 3166 - 3176
  • [9] RL-MUL: Multiplier Design Optimization with Deep Reinforcement Learning
    Zuo, Dongsheng
    Ouyang, Yikang
    Ma, Yuzhe
    [J]. 2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [10] Graphic Design Optimization Method Based on Deep Reinforcement Learning Model
    Zhang, Jiwen
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023,