Missingness-Pattern-Adaptive Learning With Incomplete Data

被引:2
|
作者
Gong, Yongshun [1 ]
Li, Zhibin [2 ]
Liu, Wei [3 ]
Lu, Xiankai [1 ]
Liu, Xinwang [4 ]
Tsang, Ivor W. W. [5 ,6 ]
Yin, Yilong [1 ]
机构
[1] Shandong Univ, Sch Software, Zibo 255000, Shandong, Peoples R China
[2] CSIRO, Canberra, ACT 2601, Australia
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[4] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[5] ASTAR, Ctr Frontier AI Res, Singapore 138632, Singapore
[6] ASTAR, IHPC, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Adaptive learning; incomplete data classification; low-rank learning; missingness patterns; support vector machine; CHAINED EQUATIONS; IMPUTATION;
D O I
10.1109/TPAMI.2023.3262784
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real-world problems deal with collections of data with missing values, e.g., RNA sequential analytics, image completion, video processing, etc. Usually, such missing data is a serious impediment to a good learning achievement. Existing methods tend to use a universal model for all incomplete data, resulting in a suboptimal model for each missingness pattern. In this paper, we present a general model for learning with incomplete data. The proposed model can be appropriately adjusted with different missingness patterns, alleviating competitions between data. Our model is based on observable features only, so it does not incur errors from data imputation. We further introduce a low-rank constraint to promote the generalization ability of our model. Analysis of the generalization error justifies our idea theoretically. In additional, a subgradient method is proposed to optimize our model with a proven convergence rate. Experiments on different types of data show that our method compares favorably with typical imputation strategies and other state-of-the-art models for incomplete data. More importantly, our method can be seamlessly incorporated into the neural networks with the best results achieved. The source code is released at https://github.com/YS-GONG/missingness-patterns.
引用
收藏
页码:11053 / 11066
页数:14
相关论文
共 50 条
  • [1] Embedding for Informative Missingness: Deep Learning With Incomplete Data
    Ghorbani, Amirata
    Zou, James Y.
    [J]. 2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 437 - 445
  • [2] Learning from data with structured missingness
    Mitra, Robin
    McGough, Sarah F.
    Chakraborti, Tapabrata
    Holmes, Chris
    Copping, Ryan
    Hagenbuch, Niels
    Biedermann, Stefanie
    Noonan, Jack
    Lehmann, Brieuc
    Shenvi, Aditi
    Doan, Xuan Vinh
    Leslie, David
    Bianconi, Ginestra
    Sanchez-Garcia, Ruben
    Davies, Alisha
    Mackintosh, Maxine
    Andrinopoulou, Eleni-Rosalina
    Basiri, Anahid
    Harbron, Chris
    MacArthur, Ben D.
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (01) : 13 - 23
  • [3] Learning from data with structured missingness
    Robin Mitra
    Sarah F. McGough
    Tapabrata Chakraborti
    Chris Holmes
    Ryan Copping
    Niels Hagenbuch
    Stefanie Biedermann
    Jack Noonan
    Brieuc Lehmann
    Aditi Shenvi
    Xuan Vinh Doan
    David Leslie
    Ginestra Bianconi
    Ruben Sanchez-Garcia
    Alisha Davies
    Maxine Mackintosh
    Eleni-Rosalina Andrinopoulou
    Anahid Basiri
    Chris Harbron
    Ben D. MacArthur
    [J]. Nature Machine Intelligence, 2023, 5 : 13 - 23
  • [4] A Bivariate Pseudolikelihood for Incomplete Longitudinal Binary Data with Nonignorable Nonmonotone Missingness
    Sinha, Sanjoy K.
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Sinha, Debajyoti
    Fitzmaurice, Garrett M.
    Molenberghs, Geert
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2011, 67 (03) : 1119 - 1126
  • [5] Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness
    Hu, Zonghui
    Follmann, Dean A.
    Qin, Jing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 247 - 257
  • [6] Pattern classification for incomplete data
    Gabrys, B
    [J]. KES'2000: FOURTH INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, VOLS 1 AND 2, PROCEEDINGS, 2000, : 454 - 457
  • [7] Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness
    Kyoung, Yujung
    Lee, Keunbaik
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (06) : 589 - 598
  • [8] A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation
    Vu, Minh H.
    Norman, Gabriella
    Nyholm, Tufve
    Lofstedt, Tommy
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1320 - 1330
  • [9] Pattern recognition with mixed and incomplete data
    Ruiz-Shulcloper J.
    [J]. Pattern Recognition and Image Analysis, 2008, 18 (4) : 563 - 576
  • [10] Adaptive Morphological Filtering of Incomplete Data
    Landstrom, Anders
    Thurley, Matthew J.
    Jonsson, Hakan
    [J]. 2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA), 2013, : 435 - 441