Simultaneous diagonalization of nearly commuting Hermitian matrices: do-one-then-do-the-other

被引:0
|
作者
Sutton, Brian D. [1 ]
机构
[1] Randolph Macon Coll, Dept Math, Ashland, VA 23005 USA
基金
美国国家科学基金会;
关键词
simultaneous diagonalization; joint diagonalization; nearly commuting; eigenvalue decomposition; spectral divide-and-conquer; NUMERICAL-METHODS; LOWER BOUNDS; SPREAD;
D O I
10.1093/imanum/drad033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Commuting Hermitian matrices may be simultaneously diagonalized by a common unitary matrix. However, the numerical aspects are delicate. We revisit a previously rejected numerical approach in a new algorithm called 'do-one-then-do-the-other'. One of two input matrices is diagonalized by a unitary similarity, and then the computed eigenvectors are applied to the other input matrix. Additional passes are applied as necessary to resolve invariant subspaces associated with repeated eigenvalues and eigenvalue clusters. The algorithm is derived by first developing a spectral divide-and-conquer method and then allowing the method to break the spectrum into, not just two invariant subspaces, but as many as safely possible. Most computational work is delegated to a black-box eigenvalue solver, which can be tailored to specific computer architectures. The overall running time is a small multiple of a single eigenvalue-eigenvector computation, even on difficult problems with tightly clustered eigenvalues. The article concludes with applications to a structured eigenvalue problem and a highly sensitive eigenvector computation.
引用
收藏
页码:1061 / 1089
页数:29
相关论文
共 50 条