The performance of speckle filters on Copernicus Sentinel-1 SAR images containing natural oil slicks

被引:1
|
作者
Vrinceanu, Cristina Andra [1 ]
Grebby, Stephen [1 ]
Marsh, Stuart [1 ]
机构
[1] Univ Nottingham, Nottingham Geospatial Inst, 30 Triumph Rd, Nottingham NG7 2TU, England
关键词
SPILLS; ENHANCEMENT; EXTRACTION; SEEPAGE; SYSTEM; MODEL;
D O I
10.1144/qjegh2022-046
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Synthetic aperture radar (SAR) is traditionally used in the identification, mapping and analysis of petroleum slicks, regardless of their origin. On SAR images, oil slicks appear as dark patches that contrast with the brightness of the surrounding sea surface. This distinction allows for automated detection algorithms to be designed using computer vision methods for objective oil slick identification. Nevertheless, efficient interpretation of the SAR imagery by statistical analysis can be diminished due to the speckle effect present on SAR images, a granular artefact associated with the coherent nature of SAR that visually degrades the image quality. In this study, a quantitative and qualitative assessment of common SAR image despeckling methods is presented, analysing their performance when applied to images containing natural oil slicks. The assessment is performed on Copernicus Sentinel-1 images acquired with various temporal and environmental conditions. The assessment covers a diverse array of filters that employ Bayesian and non-linear statistics in the spatial, transform and wavelet domains, focussing on their demonstrated performance and capabilities for edge and texture retention. In summary, the results reveal that filters using local statistics in the spatial domain produce consistent desired effects. The novel SAR-BM3D algorithm can be used effectively, albeit with a higher computational demand.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] SPECKLE REDUCING FOR SENTINEL-1 SAR DATA
    Abramov, Sergey
    Rubel, Oleksii
    Lukin, Vladimir
    Kozhemiakin, Ruskin
    Kussul, Nataliia
    Shelestov, Andrii
    Lavreniuk, Mykola
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2353 - 2356
  • [2] COPERNICUS SENTINEL-1 SATELLITE AND C-SAR INSTRUMENT
    Panetti, Aniceto
    Rostan, Friedhelm
    L'Abbate, Michelangelo
    Bruno, Claudio
    Bauleo, Antonio
    Catalano, Toni
    Cotogni, Marco
    Galvagni, Luigi
    Pietropaolo, Andrea
    Taini, Giacomo
    Venditti, Paolo
    Huchler, Markus
    Torres, Ramon
    Lokas, Svein
    Bibby, David
    Geudtner, Dirk
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1461 - 1464
  • [3] AIS P/L on SAR satellite: the Copernicus Sentinel-1 solution
    Spataro, Francesca
    Pavia, Patrizio
    Roscigno, Rita
    Torres, Ramon
    Bibby, David
    Cossu, Mario
    [J]. 13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 329 - 334
  • [4] Performance Analysis of Ship Wake Detection on Sentinel-1 SAR Images
    Graziano, Maria Daniela
    Grasso, Marco
    D'Errico, Marco
    [J]. REMOTE SENSING, 2017, 9 (11):
  • [5] Sentinel-1 SAR Images of Inland Waterways Traffic
    Alexandrov, Chavdar
    Kolev, Nikolay
    Sivkov, Yordan
    Hristov, Avgustin
    Tsvetkov, Miroslav
    [J]. 2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [6] Sentinel-1 SAR Interferometry Performance Verification
    Geudtner, Dirk
    Prats, Pau
    Yague-Martinez, Nestor
    Navas-Traver, Ignacio
    Barat, Itziar
    Torres, Ramon
    [J]. 11TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2016), 2016, : 65 - 68
  • [7] An open source approach for oil spill detection using Sentinel-1 SAR images
    Konstantinidou, Evangelia Efi
    Kolokoussis, Polychronis
    Topouzelis, Konstantinos
    Moutzouris-Sidiris, Ioannis
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2019), 2019, 11174
  • [8] Oil Rig Recognition Using Convolutional Neural Network on Sentinel-1 SAR Images
    Falqueto, Leonan E.
    Sa, Jose A. S.
    Paes, Rafael L.
    Passaro, Angelo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1329 - 1333
  • [9] The Sentinel-1 SAR Electronics Performance.
    Griffith, Les
    Watts, Christopher
    Hutchinson, Michael
    Gottwald, Michael
    Idler, Siegmund
    Bauleo, Antonio
    Carbone, Adriano
    Bertoni, Roberta
    [J]. 2013 14TH INTERNATIONAL RADAR SYMPOSIUM (IRS), VOLS 1 AND 2, 2013, : 497 - 502
  • [10] Performance of manual and automatic detection of dry snow avalanches in Sentinel-1 SAR images
    Eckerstorfer, Markus
    Oterhals, Hilde D.
    Mueller, Karsten
    Malnes, Eirik
    Grahn, Jakob
    Langeland, Stian
    Velsand, Paul
    [J]. COLD REGIONS SCIENCE AND TECHNOLOGY, 2022, 198