Optimal rates of convergence for nonparametric regression estimation under anisotropic Holder condition

被引:0
|
作者
Guo, Huijun [1 ]
Kou, Junke [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guilin, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Regression estimation; convergence rate; optimality; anisotropic Holder condition;
D O I
10.1080/03610926.2022.2091781
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the multidimensional setting, we consider the nonparametric regression estimation with errors-in-variables. Both ordinary smooth noise and super smooth one are assumed for errors in the covariates. An anisotropic kernel estimator is provided based on a deconvolution technique. We study the pointwise estimation and obtain the optimal rates of convergence under the anisotropic Holder condition.
引用
收藏
页码:687 / 699
页数:13
相关论文
共 50 条