POISSONIAN HYPERSPECTRAL IMAGE DENOISING WITHOUT USING ANSCOMBE TRANSFORM

被引:0
|
作者
Wang, Yulan [1 ,2 ,3 ]
Wang, Peng [4 ,5 ]
Zhang, Xiwang [6 ]
Wang, Jue [1 ,6 ,7 ]
Muller, Matthieu [8 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[2] Beijing Inst Surveying & Mapping, Beijing Key Lab Urban Spatial Informat Engn, Beijing 100038, Peoples R China
[3] Minist Nat Resources, Jiangsu Prov Surveying & Mapping Engn Inst, Key Lab Land Satellite Remote Sensing Applicat, Nanjing 211112, Peoples R China
[4] Changan Univ, Xian Key Lab Territorial Spatial Informat, Xian 710064, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Key Lab Radar Imaging & Microwave Photon, Minist Educ, Nanjing 210016, Peoples R China
[6] Henan Univ, Key Lab Geospatial Technol Middle & Lower Yellow, Minist Educ, Kaifeng 475001, Peoples R China
[7] Univ Calif San Diego, Rady Sch Management, San Diego, CA 92093 USA
[8] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
基金
中国国家自然科学基金;
关键词
Hyperspectral imagery; hyperspectral denoising; Poisson noise; maximum a posteriori estimation;
D O I
10.1109/IGARSS52108.2023.10282110
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the most existing Hyperspectral Image (HSI) denoising methods, Poisson noise is first transformed into Gaussian noise through Anscombe transform and then remove it. However, transform errors may occur that affect the final denoising results when using Anscombe transform. In this paper, we propose a Poissonian hyperspectral image denoising method without using Anscombe transform (WUAT) to directly remove the noise of Poissonian HSI under the maximum a posteriori (MAP) model by finding the minimum value of the negative logarithmic Poisson log-likelihood combined with the total variation (TV). The experimental results show that the proposed method can acquire better performance than most state-of-the-art denoising methods.
引用
收藏
页码:7300 / 7303
页数:4
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE DENOISING WITH DISCRETE COSINE TRANSFORM AND CNN DENOISER
    Wu, Lingsheng
    Wang, Rui
    Huang, Shaoguang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7312 - 7315
  • [2] Poissonian Hyperspectral Image Superresolution Using Alternating Direction Optimization
    Zou, Changzhong
    Xia, Youshen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) : 4464 - 4479
  • [3] Image Denoising using Contourlet Transform
    Sivakumar, R.
    Balaji, G.
    Ravikiran, R. S. J.
    Karikalan, R.
    Janaki, S. Saraswathi
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, VOL 1, PROCEEDINGS, 2009, : 22 - 25
  • [4] HYPERSPECTRAL IMAGE DENOISING USING DICTIONARY LEARNING
    Dantas, Cassio F.
    Cohen, Jeremy E.
    Gribonval, Remi
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [5] Hyperspectral Image Denoising Using Legendre-Fenchel Transform for Improved Sparsity Based Classification
    Haridas, Nikhila
    Aswathy, C.
    Sowmya, V.
    Soman, K. P.
    INTELLIGENT SYSTEMS TECHNOLOGIES AND APPLICATIONS, VOL 1, 2016, 384 : 521 - 528
  • [6] Image Restoration Using Modified Anscombe Transform and Non Linear Multiresolution Median Transform
    Jenifa, R.
    Latha, T.
    Sulochana, C. Helen
    2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 139 - 144
  • [7] Image Denoising using Wavelet Transform Method
    Gupta, Vikas
    Mahle, Rajesh
    Shriwas, Raviprakash S.
    2013 TENTH INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS (WOCN), 2013,
  • [8] An Improved Image Denoising Using Wavelet Transform
    Aravind, B. N.
    Suresh, K. V.
    2015 INTERNATIONAL CONFERENCE ON TRENDS IN AUTOMATION, COMMUNICATIONS AND COMPUTING TECHNOLOGY (I-TACT-15), 2015,
  • [9] Satellite Image Denoising using Shearlet Transform
    Anju, T. S.
    Raj, Notwin N. R.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 571 - 575
  • [10] Image denoising using wave atom transform
    Eddine, Khelil Seif
    Hassene, Seddik
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 450 - 454