FROM BRACES TO PRE-LIE RINGS

被引:2
|
作者
Shalev, Aner [1 ]
Smoktunowicz, Agata [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel
[2] Univ Edinburgh, Sch Math, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Scotland
基金
英国工程与自然科学研究理事会;
关键词
P-GROUPS; BAXTER;
D O I
10.1090/proc/16693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a brace of cardinality p(n) where p > n + 1 is prime and let ann(p(2)) be the set of elements of additive order at most p(2) in this brace. We construct a pre-Lie ring related to the brace A/ann(p(2)). In the case of strongly nilpotent braces of nilpotency index k < p the brace A/ann(p(2)) can be recovered by applying the construction of the group of flows to the resulting pre-Lie ring. We do not know whether or not our construction is related to the group of flows when applied to braces which are not right nilpotent.
引用
收藏
页码:1545 / 1559
页数:15
相关论文
共 50 条
  • [1] On the passage from finite braces to pre-Lie rings
    Smoktunowicz, Agata
    ADVANCES IN MATHEMATICS, 2022, 409
  • [2] A new formula for Lazard's correspondence for finite braces and pre-Lie algebras
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA, 2022, 594 : 202 - 229
  • [3] Quasi-triangular pre-Lie bialgebras, factorizable pre-Lie bialgebras and Rota-Baxter pre-Lie algebras
    Wang, You
    Bai, Chengming
    Liu, Jiefeng
    Sheng, Yunhe
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [4] Algebraic approach to Rump's results on relations between braces and pre-lie algebras
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (03)
  • [5] PRE-LIE LAWS IN INTERACTION
    Manchon, Dominique
    Saidi, Abdellatif
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3662 - 3680
  • [6] Free Pre-Lie Algebras are Free as Lie Algebras
    Chapoton, Frederic
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (03): : 425 - 437
  • [7] Groups, Lie rings and braces
    Shalev, Aner
    Smoktunowicz, Agata
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (04) : 422 - 433
  • [8] PRE-LIE DEFORMATION THEORY
    Dotsenko, Vladimir
    Shadrin, Sergey
    Vallette, Bruno
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (03) : 505 - 543
  • [9] On Free Pre-Lie Algebras
    Li, Yu
    Mo, Qiuhui
    ALGEBRA COLLOQUIUM, 2017, 24 (02) : 267 - 284
  • [10] Degenerations of pre-Lie algebras
    Benes, Thomas
    Burde, Dietrich
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)