Machine learning-based colistin resistance marker screening and phenotype prediction in Escherichia coli from whole genome sequencing data

被引:1
|
作者
Tian, Yingxin [1 ]
Zhang, Di [2 ]
Chen, Fangyuan [3 ]
Rao, Guanhua [3 ]
Zhang, Ying [1 ,4 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Lab Med, Beijing, Peoples R China
[2] Cent South Univ, Xiangya Hosp 3, Dept Lab Med, Changsha, Peoples R China
[3] Genskey Med Technol Co Ltd, Beijing 102206, Peoples R China
[4] Chinese Peoples Liberat Army Gen Hosp, Beijing 100853, Peoples R China
基金
北京市自然科学基金;
关键词
D O I
10.1016/j.jinf.2023.11.009
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
引用
收藏
页码:191 / 193
页数:3
相关论文
共 50 条
  • [1] Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data
    Humphries, Romney M.
    Bragin, Eugene
    Parkhill, Julian
    Morales, Grace
    Schmitz, Jonathan E.
    Rhodes, Paul A.
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2023, 61 (03)
  • [2] Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning
    Ren, Yunxiao
    Chakraborty, Trinad
    Doijad, Swapnil
    Falgenhauer, Linda
    Falgenhauer, Jane
    Goesmann, Alexander
    Hauschild, Anne-Christin
    Schwengers, Oliver
    Heider, Dominik
    [J]. BIOINFORMATICS, 2022, 38 (02) : 325 - 334
  • [3] Machine learning and feature extraction for rapid antimicrobial resistance prediction of Acinetobacter baumannii from whole-genome sequencing data
    Gao, Yue
    Li, Henan
    Zhao, Chunjiang
    Li, Shuguang
    Yin, Guankun
    Wang, Hui
    [J]. FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [4] Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data
    Hicks, Allison L.
    Wheeler, Nicole
    Sanchez-Buso, Leonor
    Rakeman, Jennifer L.
    Harris, Simon R.
    Grad, Yonatan H.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
  • [5] Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
    Deelder, Wouter
    Christakoudi, Sofia
    Phelan, Jody
    Benavente, Ernest Diez
    Campino, Susana
    McNerney, Ruth
    Palla, Luigi
    Clark, Taane G.
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [6] Learning From Limited Data: Towards Best Practice Techniques for Antimicrobial Resistance Prediction From Whole Genome Sequencing Data
    Lueftinger, Lukas
    Majek, Peter
    Beisken, Stephan
    Rattei, Thomas
    Posch, Andreas E.
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
  • [7] Prediction of antimicrobial resistance in clinicalCampylobacter jejuniisolates from whole-genome sequencing data
    Dahl, Louise Gade
    Joensen, Katrine Grimstrup
    Osterlund, Mark Thomas
    Kiil, Kristoffer
    Nielsen, Eva Moller
    [J]. EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2021, 40 (04) : 673 - 682
  • [8] Profiling of Antimicrobial Resistance Genes and Integron from Escherichia coli Isolates Using Whole Genome Sequencing
    Joddha, Harshrajsinh. B. B.
    Mathakiya, Rafiyuddin. A. A.
    Joshi, Kuldip. V. V.
    Khant, Ravindra. B. B.
    Golaviya, Akash. V. V.
    Hinsu, Ankit. T. T.
    Desai, Mansi. R. R.
    Jakhesara, Subhash. J. J.
    Koringa, Prakash. G. G.
    [J]. GENES, 2023, 14 (06)
  • [9] Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
    Benkwitz-Bedford, Sam
    Palm, Martin
    Demirtas, Talip Yasir
    Mustonen, Ville
    Farewell, Anne
    Warringer, Jonas
    Parts, Leopold
    Moradigaravand, Danesh
    [J]. MSYSTEMS, 2021, 6 (04)
  • [10] Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates
    R. Vanstokstraeten
    D. Piérard
    F. Crombé
    D. De Geyter
    I. Wybo
    A. Muyldermans
    L. Seyler
    B. Caljon
    T. Janssen
    T. Demuyser
    [J]. Scientific Reports, 13 (1)