FAST QTMT PARTITION FOR VVC INTRA CODING USING U-NET FRAMEWORK

被引:3
|
作者
Zan, Zhao [1 ]
Huang, Leilei [2 ]
Chen, ShuShi [1 ]
Zhang, Xiantao [3 ]
Zhao, Zhenghui [3 ]
Yin, Haibing [4 ]
Fan, Yibo [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] East China Normal Univ, Shanghai, Peoples R China
[3] Alibaba Grp, Hangzhou, Peoples R China
[4] Hangzhou Dianzi Univ, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
VVC; intra coding; U-Net; complexity; DECISION; NETWORK;
D O I
10.1109/ICIP49359.2023.10221979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Versatile Video Coding (VVC) has significantly increased encoding efficiency at the expense of numerous complex coding tools, particularly the flexible Quad-Tree plus Multi-type Tree (QTMT) block partition. This paper proposes a deep learning-based algorithm applied in fast QTMT partition for VVC intra coding. Our solution greatly reduces encoding time by early termination of less-likely intra prediction and partitions with negligible BD-BR increase. Firstly, a redesigned U-Net is recommended as the network's fundamental framework. Next, we design a Quality Parameter (QP) fusion network to regulate the effect of QPs on the partition results. Finally, we adopt a refined post-processing strategy to better balance encoding performance and complexity. Experimental results demonstrate that our solution outperforms the state-of-the-art works with a complexity reduction of 44.74% to 68.76% and a BD-BR increase of 0.60% to 2.33%.
引用
收藏
页码:600 / 604
页数:5
相关论文
共 50 条
  • [1] Texture-based fast QTMT partition algorithm in VVC intra coding
    Qiang Li
    Hui Meng
    Ya Li
    Signal, Image and Video Processing, 2023, 17 : 1581 - 1589
  • [2] Texture-based fast QTMT partition algorithm in VVC intra coding
    Li, Qiang
    Meng, Hui
    Li, Ya
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1581 - 1589
  • [3] A Fast QTMT Partition Decision Strategy for VVC Intra Prediction
    Fan, Yibo
    Chen, Jun'An
    Sun, Heming
    Katto, Jiro
    Jing, Ming'E
    IEEE ACCESS, 2020, 8 : 107900 - 107911
  • [4] QTMT-LNN: A fast intra CU partition using lightweight neural network for 360-degree video coding on VVC
    Sun, Zhewen
    Yu, Li
    Peng, Wei
    IET IMAGE PROCESSING, 2023, 17 (02) : 597 - 612
  • [5] CNN-based ternary tree partition approach for VVC intra-QTMT coding
    Belghith, Fatma
    Abdallah, Bouthaina
    Ben Jdidia, Sonda
    Ben Ayed, Mohamed Ali
    Masmoudi, Nouri
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3587 - 3594
  • [6] CNN-based ternary tree partition approach for VVC intra-QTMT coding
    Fatma Belghith
    Bouthaina Abdallah
    Sonda Ben Jdidia
    Mohamed Ali Ben Ayed
    Nouri Masmoudi
    Signal, Image and Video Processing, 2024, 18 : 3587 - 3594
  • [7] GBM-QTMT: Gradient Boosting Machine-based fast QTMT partition decision for VVC inter-coding
    Bakkouri, Siham
    Bakkouri, Ibtissam
    Elyousfi, Abderrahmane
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [8] Fast Adaptive CU Partition Decision Algorithm for VVC Intra Coding
    Si, Lina
    Zhu, Wendi
    Zhang, Qiuwen
    IEEE ACCESS, 2023, 11 : 119766 - 119778
  • [9] Fast Prediction of Ternary Tree Partition for Efficient VVC Intra Coding
    Sun, Jiamin
    Zhu, Zhongjie
    Bai, Yongqiang
    Wang, Yuer
    Zhang, Rong
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 257 - 269
  • [10] Fast CTU Partition Decision Algorithm for VVC Intra and Inter Coding
    Tang, Na
    Cao, Jian
    Liang, Fan
    Wang, Jun
    Liu, Hongmei
    Wang, Xiaoyang
    Du, Xiaorong
    2019 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2019), 2019, : 361 - 364