A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis

被引:7
|
作者
Zhou, Hong-Yu [1 ]
Lu, Chixiang [1 ]
Chen, Chaoqi [1 ]
Yang, Sibei [2 ]
Yu, Yizhou [1 ]
机构
[1] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China
关键词
Semantics; Image restoration; Task analysis; Visualization; Three-dimensional displays; Medical diagnostic imaging; Image segmentation; Context restoration; feature pyramid; medical image analysis; self-supervised learning; transfer learning; NODULES;
D O I
10.1109/TPAMI.2023.3234002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations. Codes and models are available at https://github.com/RL4M/PCRLv2.
引用
收藏
页码:8020 / 8035
页数:16
相关论文
共 50 条
  • [1] UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
    Li, Zhaowen
    Zhu, Yousong
    Yang, Fan
    Li, Wei
    Zhao, Chaoyang
    Chen, Yingying
    Chen, Zhiyang
    Xie, Jiahao
    Wu, Liwei
    Zhao, Rui
    Tang, Ming
    Wang, Jinqiao
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14607 - 14616
  • [2] Correlational Image Modeling for Self-Supervised Visual Pre-Training
    Li, Wei
    Xie, Jiahao
    Loy, Chen Change
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15105 - 15115
  • [3] DenseCL: A simple framework for self-supervised dense visual pre-training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    [J]. VISUAL INFORMATICS, 2023, 7 (01) : 30 - 40
  • [4] Geometric Visual Similarity Learning in 3D Medical Image Self-supervised Pre-training
    He, Yuting
    Yang, Guanyu
    Ge, Rongjun
    Chen, Yang
    Coatrieux, Jean-Louis
    Wang, Boyu
    Li, Shuo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9538 - 9547
  • [5] Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis
    Tang, Yucheng
    Yang, Dong
    Li, Wenqi
    Roth, Holger R.
    Landman, Bennett
    Xu, Daguang
    Nath, Vishwesh
    Hatamizadeh, Ali
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20698 - 20708
  • [6] Dense Contrastive Learning for Self-Supervised Visual Pre-Training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    Li, Lei
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3023 - 3032
  • [7] Masked Feature Prediction for Self-Supervised Visual Pre-Training
    Wei, Chen
    Fan, Haoqi
    Xie, Saining
    Wu, Chao-Yuan
    Yuille, Alan
    Feichtenhofer, Christoph
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14648 - 14658
  • [8] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [9] Representation Recovering for Self-Supervised Pre-training on Medical Images
    Yan, Xiangyi
    Naushad, Junayed
    Sun, Shanlin
    Han, Kun
    Tang, Hao
    Kong, Deying
    Ma, Haoyu
    You, Chenyu
    Xie, Xiaohui
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2684 - 2694
  • [10] DiT: Self-supervised Pre-training for Document Image Transformer
    Li, Junlong
    Xu, Yiheng
    Lv, Tengchao
    Cui, Lei
    Zhang, Cha
    Wei, Furu
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3530 - 3539