A single timescale stochastic quasi-Newton method for stochastic optimization

被引:0
|
作者
Wang, Peng [1 ,2 ]
Zhu, Detong [3 ]
机构
[1] Hainan Normal Univ, Key Lab, Minist Educ, Hainan 570203, Peoples R China
[2] Hainan Normal Univ, Math & Stat Coll, Hainan 570203, Peoples R China
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai, Peoples R China
关键词
Stochastic optimization; quasi-Newton method; BFGS update technique; machine learning; CONVERGENCE;
D O I
10.1080/00207160.2023.2269430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a single timescale stochastic quasi-Newton method for solving the stochastic optimization problems. The objective function of the problem is a composition of two smooth functions and their derivatives are not available. The algorithm sets to approximate sequences to estimate the gradient of the composite objective function and the inner function. The matrix correction parameters are given in BFGS update form for avoiding the assumption that Hessian matrix of objective is positive definite. We show the global convergence of the algorithm. The algorithm achieves the complexity $ O(\epsilon <^>{-1}) $ O(epsilon-1) to find an $ \epsilon - $ epsilon-approximate stationary point and ensure that the expectation of the squared norm of the gradient is smaller than the given accuracy tolerance epsilon. The numerical results of nonconvex binary classification problem using the support vector machine and a multicall classification problem using neural networks are reported to show the effectiveness of the algorithm.
引用
收藏
页码:2196 / 2216
页数:21
相关论文
共 50 条
  • [1] STOCHASTIC QUASI-NEWTON METHOD FOR NONCONVEX STOCHASTIC OPTIMIZATION
    Wang, Xiao
    Ma, Shiqian
    Goldfarb, Donald
    Liu, Wei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 927 - 956
  • [2] A stochastic quasi-Newton method for simulation response optimization
    Kao, C
    Chen, SP
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 173 (01) : 30 - 46
  • [3] Quasi-Newton methods for stochastic optimization
    Levy, MN
    Trosset, MW
    Kincaid, RR
    [J]. ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 304 - 309
  • [4] A STOCHASTIC QUASI-NEWTON METHOD FOR LARGE-SCALE OPTIMIZATION
    Byrd, R. H.
    Hansen, S. L.
    Nocedal, Jorge
    Singer, Y.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 1008 - 1031
  • [5] A SMOOTHING STOCHASTIC QUASI-NEWTON METHOD FOR NON-LIPSCHITZIAN STOCHASTIC OPTIMIZATION PROBLEMS
    Yousefian, Farzad
    Nedic, Angelia
    Shanbhag, Uday V.
    [J]. 2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 2291 - 2302
  • [6] Stochastic Quasi-Newton Methods
    Mokhtari, Aryan
    Ribeiro, Alejandro
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1906 - 1922
  • [7] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Minghan Yang
    Andre Milzarek
    Zaiwen Wen
    Tong Zhang
    [J]. Mathematical Programming, 2022, 194 : 257 - 303
  • [8] A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization
    Yang, Minghan
    Milzarek, Andre
    Wen, Zaiwen
    Zhang, Tong
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 257 - 303
  • [9] A Stochastic Quasi-Newton Method for Large-Scale Nonconvex Optimization With Applications
    Chen, Huiming
    Wu, Ho-Chun
    Chan, Shing-Chow
    Lam, Wong-Hing
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) : 4776 - 4790
  • [10] A Variable Sample-size Stochastic Quasi-Newton Method for Smooth and Nonsmooth Stochastic Convex Optimization
    Jalilzadeh, Afrooz
    Nedic, Angelia
    Shanbhag, Uday V.
    Yousefian, Farzad
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4097 - 4102