USING SENTINEL-2 AND STACKING REGRESSORS FOR FOREST HEIGHT ESTIMATION

被引:0
|
作者
Pereira-Pires, Joao E. [1 ]
Silva, Joao M. N. [2 ]
Moral, Andre [1 ]
Fonseca, Jose M. [1 ]
机构
[1] NOVA Univ Lisbon, Sch Sci & Technol, Ctr Technol & Syst, UNINOVA, P-2829516 Caparica, Portugal
[2] Univ Lisbon, Sch Agr, Forest Res Ctr & Associate Lab TERRA, P-1349017 Lisbon, Portugal
关键词
Climate Change; Forest Height; Mediterranean Forests; Multispectral; Stacking Regressor; Sentinel-2; Wildfires; CANOPY HEIGHT;
D O I
10.1109/IGARSS52108.2023.10281979
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The climate change impacts can also be seen in the growing number of wildfires. Consequently, forest management and the updating of forest inventories become more important in the wildfires' avoidance. Measuring the Forest Height (FH) is an important activity in forests monitoring, since the FH can serve as a proxy variable of other parameters, as the aboveground biomass. Normally, FH is mapped through field campaigns or airborne laser scanning missions. However, these approaches do not offer the scalability needed and they are expensive. Therefore, multispectral data from Remote Sensing can be used for producing regional maps of FH. Here it is proposed a regionally calibrated Regression Methodology that uses multispectral data from Sentinel-2 and a Stacking Regressor for mapping the FH in Mediterranean forests. For a total of 17 regions across Portugal, Spain, and California, a R-2 between 43.71% and 72.85% and a RMSE between 0.85m and 4.03m.
引用
收藏
页码:1561 / 1564
页数:4
相关论文
共 50 条
  • [1] Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm
    Jiang, Fugen
    Zhao, Feng
    Ma, Kaisen
    Li, Dongsheng
    Sun, Hua
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [2] Upscaling Forest Canopy Height Estimation Using Waveform-Calibrated GEDI Spaceborne LiDAR and Sentinel-2 Data
    Wang, Junjie
    Shen, Xin
    Cao, Lin
    [J]. REMOTE SENSING, 2024, 16 (12)
  • [3] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [4] Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data
    Chen, Yuyun
    Li, Longwei
    Lu, Dengsheng
    Li, Dengqiu
    [J]. REMOTE SENSING, 2019, 11 (01)
  • [5] Aboveground biomass estimation and mapping using Sentinel-2 data in a dry afromontane forest
    Tetemke, Buruh Abebe
    Birhane, Emiru
    Rannestad, Meley Mekonen
    Eid, Tron
    [J]. International Journal of Remote Sensing, 2024, 45 (24) : 9461 - 9479
  • [6] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    [J]. Environmental Monitoring and Assessment, 2024, 196
  • [7] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [8] Improved random forest algorithms for increasing the accuracy of forest aboveground biomass estimation using Sentinel-2 imagery
    Zhang, Xiaoli
    Shen, Hanwen
    Huang, Tianbao
    Wu, Yong
    Guo, Binbing
    Liu, Zhi
    Luo, Hongbin
    Tang, Jing
    Zhou, Hang
    Wang, Leiguang
    Xu, Weiheng
    Ou, Guanglong
    [J]. ECOLOGICAL INDICATORS, 2024, 159
  • [9] Deep Neural Networks with Transfer Learning for Forest Variable Estimation Using Sentinel-2 Imagery in Boreal Forest
    Astola, Heikki
    Seitsonen, Lauri
    Halme, Eelis
    Molinier, Matthieu
    Lonnqvist, Anne
    [J]. REMOTE SENSING, 2021, 13 (12)
  • [10] National mapping and estimation of forest area by dominant tree species using Sentinel-2 data
    Breidenbach, Johannes
    Waser, Lars T.
    Debella-Gilo, Misganu
    Schumacher, Johannes
    Rahlf, Johannes
    Hauglin, Marius
    Puliti, Stefano
    Astrup, Rasmus
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2021, 51 (03) : 365 - 379